@article{ZNSL_2018_473_a9,
author = {A. V. Ivanov},
title = {On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {161--173},
year = {2018},
volume = {473},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/}
}
TY - JOUR
AU - A. V. Ivanov
TI - On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2018
SP - 161
EP - 173
VL - 473
UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/
LA - ru
ID - ZNSL_2018_473_a9
ER -
%0 Journal Article
%A A. V. Ivanov
%T On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 161-173
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/
%G ru
%F ZNSL_2018_473_a9
A. V. Ivanov. On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 161-173. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/
[1] A. Kitaev, Notes on $\widetilde{SL}(2,\mathbb{R})$ representations, 2018, arXiv: 1711.08169v2
[2] A. Kitaev, S. Josephine Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, 2018, arXiv: 1711.08467v4 | MR
[3] M. Kirch, A. N. Manashov, “Noncompact $SL(2,\mathbb{R})$ spin chain”, JHEP, 0406 (2004), 035 | DOI | MR
[4] S. É. Derkachov, G. P. Korchemsky, A. N. Manashov, “Separation of variables for the quantum $SL(2,\mathbb{R})$ spin chain”, JHEP, 0307 (2003), 047 | DOI | MR
[5] V. Bargmann, “Irreducible unitary representations of the Lorentz group”, Annals of Mathematics, 48:3 (1947), 568–640 | DOI | MR | Zbl
[6] Harish-Chandra, “Plancherel formula for the $2\times2$ real unimodular group”, Proc. Natl. Acad. Sci. U.S.A.,, 38:4 (1952), 337–342 | DOI | MR | Zbl
[7] L. Pukánszky, “On the Kronecker products of irreducible representations of the $2\times2$ real unimodular group I”, Trans. Amer. Math. Soc., 100 (1961), 116 | MR | Zbl
[8] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, v. 5, Academic Press, 1966 | MR | Zbl
[9] S. Lang, $SL_2(\mathbb{R})$, Addison-Wesley, Reading, Mass., 1975 | MR
[10] R. P. Martin, “On the decomposition of tensor products of principal series representations for real-rank one semisimple groups”, Trans. Amer. Math. Soc., 201 (1975), 177–211 | DOI | MR | Zbl
[11] J. Repka, “Tensor products of unitary representations of $SL_2(\mathbb{R})$”, Bull. Amer. Math. Soc., 82:6 (1976), 930–932 | DOI | MR | Zbl
[12] J. Repka, “Tensor products of unitary representations of $SL_2(\mathbb{R})$”, Amer. J. Math., 100:4 (1978), 747–774 | DOI | MR | Zbl
[13] W. Groenevelt, “Wilson function transforms related to Racah coefficients”, Acta Appl. Math., 91:2 (2006), 133–191 | DOI | MR | Zbl
[14] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and products, sixth ed., Academic Press, 2000 | MR | Zbl