On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 161-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As is well known, the tensor product of two representations of continuous series in the case of the $SL(2,\mathbb{R})$ group can be decomposed into a direct sum of representations corresponding to the discrete and continuous spectrum. The completeness of the projectors performing decomposition also follows from the general theory. The main aim of the work is to check this equality in a particular case in the sense of generalized functions. It is worth noting that in the course of calculations, a technique for working with projectors is developed, in particular, operators for unitary equivalence are built. This work can be useful in various applications, for example, for calculating of $6j$-symbols.
@article{ZNSL_2018_473_a9,
     author = {A. V. Ivanov},
     title = {On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {161--173},
     year = {2018},
     volume = {473},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 161
EP  - 173
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/
LA  - ru
ID  - ZNSL_2018_473_a9
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 161-173
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/
%G ru
%F ZNSL_2018_473_a9
A. V. Ivanov. On the completeness of projectors for tensor product decomposition of continuous series representations groups $SL (2,\mathbb{R})$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 161-173. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a9/

[1] A. Kitaev, Notes on $\widetilde{SL}(2,\mathbb{R})$ representations, 2018, arXiv: 1711.08169v2

[2] A. Kitaev, S. Josephine Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, 2018, arXiv: 1711.08467v4 | MR

[3] M. Kirch, A. N. Manashov, “Noncompact $SL(2,\mathbb{R})$ spin chain”, JHEP, 0406 (2004), 035 | DOI | MR

[4] S. É. Derkachov, G. P. Korchemsky, A. N. Manashov, “Separation of variables for the quantum $SL(2,\mathbb{R})$ spin chain”, JHEP, 0307 (2003), 047 | DOI | MR

[5] V. Bargmann, “Irreducible unitary representations of the Lorentz group”, Annals of Mathematics, 48:3 (1947), 568–640 | DOI | MR | Zbl

[6] Harish-Chandra, “Plancherel formula for the $2\times2$ real unimodular group”, Proc. Natl. Acad. Sci. U.S.A.,, 38:4 (1952), 337–342 | DOI | MR | Zbl

[7] L. Pukánszky, “On the Kronecker products of irreducible representations of the $2\times2$ real unimodular group I”, Trans. Amer. Math. Soc., 100 (1961), 116 | MR | Zbl

[8] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Generalized functions, v. 5, Academic Press, 1966 | MR | Zbl

[9] S. Lang, $SL_2(\mathbb{R})$, Addison-Wesley, Reading, Mass., 1975 | MR

[10] R. P. Martin, “On the decomposition of tensor products of principal series representations for real-rank one semisimple groups”, Trans. Amer. Math. Soc., 201 (1975), 177–211 | DOI | MR | Zbl

[11] J. Repka, “Tensor products of unitary representations of $SL_2(\mathbb{R})$”, Bull. Amer. Math. Soc., 82:6 (1976), 930–932 | DOI | MR | Zbl

[12] J. Repka, “Tensor products of unitary representations of $SL_2(\mathbb{R})$”, Amer. J. Math., 100:4 (1978), 747–774 | DOI | MR | Zbl

[13] W. Groenevelt, “Wilson function transforms related to Racah coefficients”, Acta Appl. Math., 91:2 (2006), 133–191 | DOI | MR | Zbl

[14] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series and products, sixth ed., Academic Press, 2000 | MR | Zbl