On the application of matrix formalism of heat kernel to the number theory
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 147-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Earlier, in the studies of the combinatorial properties of the heat kernel of Laplace operator with covariant derivative, the diagram technique and the matrix formalism were constructed. In particular, the obtained formalism makes it possible to control the coefficients of the heat kernel, that is rather useful for calculations. In this paper, a simple case with abelian connection in two-dimensional space is considered. We give a mathematical description of operators and find a relation between operators and generating functions of numbers.
@article{ZNSL_2018_473_a8,
     author = {A. V. Ivanov},
     title = {On the application of matrix formalism of heat kernel to the number theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--160},
     year = {2018},
     volume = {473},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a8/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On the application of matrix formalism of heat kernel to the number theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 147
EP  - 160
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a8/
LA  - ru
ID  - ZNSL_2018_473_a8
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On the application of matrix formalism of heat kernel to the number theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 147-160
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a8/
%G ru
%F ZNSL_2018_473_a8
A. V. Ivanov. On the application of matrix formalism of heat kernel to the number theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 147-160. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a8/

[1] A. V. Ivanov, “Diagram technique of the heat kernel of the covariant Laplace operator”, Theor. Math. Phys. (to appear)

[2] H. P. McKean, I. M. Singer, J. Diff. Geom., 1 (1967), 43–69 ; P. Gilkey, J. Diff. Geom., 10 (1975), 601–618 ; P. Amsterdamski, A. L. Berkin, D. J. O'Connor, Class. Quant. Grav., 6 (1989), 1981–1991 ; I. G. Avramidi, Phys. Lett. B, 238 (1990), 92–97 ; I. G. Avramidi, Nucl. Phys. B, 355 (1991), 712–754 ; A. E. M. van de Ven, Class. Quant. Grav., 15 (1998), 2311–2344 ; D. V. Vassilevich, Phys. Rep., 388 (2003), 279–360 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl

[3] A. O. Barvinsky, G. A. Vilkovisky, Nucl. Phys. B, 282 (1987), 163–188 ; A. O. Barvinsky, G. A. Vilkovisky, Nucl. Phys. B, 333 (1990), 471–524 ; I. G. Avramidi, Commun. Math. Phys., 288 (2009), 963–1006 | DOI | MR | DOI | MR | DOI | MR | Zbl

[4] Graham M. Shore, Annals of physics, 137 (1981), 262–305 | DOI | MR

[5] S. Dascalescu, C. Nastasescu, S. Raianu. Hopf algebras: an introduction, Monographs in Pure and Applied Mathematics, 235, Marcel Dekker, New York, 2000 ; Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, New York, 1969 | MR | DOI | MR

[6] Eugene F. Krause, Taxicab Geometry, Courier Corporation, 1975

[7] P. Hilton, J. Pedersen, Math. Int., 13 (1991), 64–75 | DOI | MR | Zbl

[8] E. T. Bell, Amer. Math. Monthly, 41 (1934), 411–419 ; J. Riordan, An Introduction to Combinatorial Analysis, Wiley, NY, 1958 | DOI | MR | MR | Zbl

[9] G. T. Williams, Amer. Math. Monthly, 52 (1945), 323–327 ; E. A. Enneking, J. C. Ahuja, Fibonacci Quarterly, 14 (1976), 67–73 | MR | Zbl | MR | Zbl

[10] M. Pourahmadi, Amer. Math. Monthly, 91 (1984), 303–307 | MR | Zbl