@article{ZNSL_2018_473_a7,
author = {S. E. Derkachov and P. A. Valinevich},
title = {Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of {Sklyanin} $B$-operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--146},
year = {2018},
volume = {473},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a7/}
}
TY - JOUR
AU - S. E. Derkachov
AU - P. A. Valinevich
TI - Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of Sklyanin $B$-operator
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2018
SP - 110
EP - 146
VL - 473
UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a7/
LA - en
ID - ZNSL_2018_473_a7
ER -
%0 Journal Article
%A S. E. Derkachov
%A P. A. Valinevich
%T Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of Sklyanin $B$-operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 110-146
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a7/
%G en
%F ZNSL_2018_473_a7
S. E. Derkachov; P. A. Valinevich. Separation of variables for the quantum $SL(3,\mathbb{C})$ spin magnet: eigenfunctions of Sklyanin $B$-operator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 110-146. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a7/
[1] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lect. Notes Phys., 151, 1982, 61 | DOI | MR | Zbl
[2] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Quantum symmetries/Symmetries Quantiques, Proc. Les-Houches symmer school, LXIV, eds. A. Connes, K. Kawedzki, J. Zinn-Justin, North Holland, 1998, 149–211 | MR
[3] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[4] E. K. Sklyanin, “The quantum Toda chain”, Lect. Notes Phys., 226, 1985, 196–233 | DOI | MR | Zbl
[5] E. K. Sklyanin, “Quantum Inverse Scattering Method.Selected Topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. Mo-Lin Ge, World Scientific, Singapore, 1992, 63–97, arXiv: hep-th/9211111 | MR
[6] E. K. Sklyanin, “Separation of variables in the classical integrable SL(3) magnetic chain”, Commun. Math. Phys., 150 (1992), 181–192, arXiv: hep-th/9211126 | DOI | MR
[7] E. K. Sklyanin,, “Separation of variables in the quantum integrable models related to the Yangian Y[sl(3)]”, Zap. Nauchn. Semin., 205, 1993, 166, arXiv: hep-th/9212076 | MR
[8] E. K. Sklyanin, “Separation of variables — new trends”, Prog. Theor. Phys. Suppl., 118 (1995), 35–60, arXiv: solv-int/9504001 | DOI | MR | Zbl
[9] D. R. D. Scott, “Classical functional Bethe ansatz for SL(N): Separation of variables for the magnetic chain”, J. Math. Phys., 35 (1994), 5831, arXiv: hep-th/9403030 | DOI | MR | Zbl
[10] M. I. Gekhtman, “Separation of variables in the classical SL(N) magnetic chain”, Comm. Math. Phys., 167:3 (1995), 593–605 | DOI | MR | Zbl
[11] F. A. Smirnov, Separation of variables for quantum integrable models related to $ U_q(\hat{sl}_N) $, arXiv: math-ph/0109013 | MR
[12] N. Gromov, F. Levkovich-Maslyuk, G. Sizov, “New Construction of Eigenstates and Separation of Variables for SU(N) Quantum Spin Chains”, JHEP, 1709 (2017), 111, arXiv: 1610.08032 | DOI | MR
[13] A. Liashyk, N. A. Slavnov, “On Bethe vectors in $gl_3$-invariant integrable models”, JHEP, 1806 (2018), 018, arXiv: 1803.07628 | DOI | MR
[14] N. Kitanine, J. M. Maillet, G. Niccoli, V. Terras, “The open XXX spin chain in the SoV framework: scalar product of separate states”, J. Phys. A: Math. Theor., 50 (2017), 224001, arXiv: 1606.06917 | DOI | MR | Zbl
[15] N. Kitanine, J.-M. Maillet, G. Niccoli, “Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from SOV”, J. Stat. Mech., 2014, P05015, arXiv: 1401.4901 | DOI | MR
[16] A. G. Bytsko, J. Teschner, “Quantization of models with non-compact quantum group symmetry. Modular XXZ magnet and lattice sinh-Gordon model”, J. Phys. A, 39 (2006), 12927–12982 | DOI | MR
[17] S. Kharchev, D. Lebedev, “Eigenfunctions of $GL(N, R)$ Toda chain: The Mellin-Barnes representation”, JETP Lett., 71 (2000), 235–238 | DOI
[18] S. Kharchev, D. Lebedev, “Integral representations for the eigenfunctions of quantum open and periodic Toda chains from QISM formalism”, J. Phys. A, 34 (2001), 2247–2258 | DOI | MR | Zbl
[19] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, “Unitary representations of $U_q (sl(2, R))$, the modular double and the multiparticle q-deformed Toda chains”, Comm. Math. Phys., 225 (2002), 573–609 | DOI | MR | Zbl
[20] A. V. Silantyev, “Transition function for the Toda chain”, Theor. Math. Phys., 150 (2007), 315–331 | DOI | MR | Zbl
[21] M. Kirch, A. N. Manashov, “Noncompact $SL(2,R)$ spin chain”, JHEP, 0406 (2004), 035, arXiv: hep-th/0405030 | DOI | MR
[22] L. D. Faddeev, G. P. Korchemsky, “High-energy QCD as a completely integrable model”, Phys. Lett. B, 342 (1995), 311–322 | DOI
[23] L. N. Lipatov, “High-energy asymptotics of multicolor QCD and exactly solvable lattice models”, Pisma Zh. Eksp. Teor. Fiz., 59 (1994), 571–574
[24] H. J. De Vega, L. N. Lipatov, “Interaction of reggeized gluons in the Baxter-Sklyanin representation”, Phys. Rev. D, 64 (2001), 114019 | DOI
[25] H. J. de Vega, L. N. Lipatov, “Exact resolution of the Baxter equation for reggeized gluon interactions”, Phys. Rev. D, 66 (2002), 074013 | DOI
[26] S. E. Derkachov, G. P. Korchemsky, A. N. Manashov, “Noncompact Heisenberg spin magnets from high-energy QCD. I: Baxter Q-operator and separation of variables”, Nucl. phys. B, 617 (2001), 375, arXiv: hep-th/0107193 | DOI | MR | Zbl
[27] S. E. Derkachov, A. N. Manashov, “Iterative construction of eigenfunctions of the monodromy matrix for SL(2,C) magnet”, J. Phys. A: Math. gen., 47 (2014), 305204, arXiv: 1401.7477 [math-ph] | DOI | MR | Zbl
[28] A. Givental, “Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture”, AMS Trans. (2), 180 (1997), 103–115 | MR | Zbl
[29] P. Valinevich, S. Derkachov, P. Kulish, E. Uvarov, “Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an SL(n,C)-invariant spin chain”, Theor. Math. Phys., 189:2 (2016), 1529–1553 | DOI | MR | Zbl
[30] A. Molev, M. Nazarov, G. Olshanskii, “Yangians and classical Lie algebras”, Russ. Math. Surveys, 51 (1996), 205 | DOI | MR | Zbl
[31] A. Molev, Yangians and Classical Lie Algebras, Mathematical Surveys and Monographs, 143, AMS, Providence, RI, 2007 | DOI | MR | Zbl
[32] Academie-Verlag, Berlin, 1957 | MR
[33] A. Knapp, E. Stein, “Intertwining operators for semi-simple Lie groups”, Ann. of Math. (2), 93 (1971), 489–578 | DOI | MR | Zbl
[34] A. W. Knapp, Representation theory of semisimple groups: an overview based on examples, Princeton Univ. Press, N. J. Princeton, 1986 | MR | Zbl
[35] S. E. Derkachov, A. N. Manashov, “R-Matrix and Baxter Q-Operators for the Noncompact SL(N,C) Invarianit Spin Chain”, SIGMA, 2 (2006), 084 | MR | Zbl
[36] S. Derkachov, A. Manashov, “General solution of the Yang-Baxter equation with the symmetry group SL(n, C)”, Algebra i Analiz, 21:4 (2009), 1–94 | MR
[37] K. K. Kozlowski, Asymptotic analysis and quantum integrable models, arXiv: 1508.06085 [math-ph]
[38] K. K. Kozlowski, “Unitarity of the SoV transform for the Toda chain”, Comm. Math. Phys., 334:1 (2015), 223–273 | DOI | MR | Zbl
[39] G. Schrader, A. Shapiro, On b-Whittaker functions, arXiv: 1806.00747 [math-ph]
[40] S. Derkachov, K. Kozlowski, A. Manashov, On the separation of variables for the modular XXZ magnet and the lattice Sinh-Gordon models, arXiv: 1806.04487 [math-ph]
[41] J. M. Maillet, G. Niccoli, On quantum separation of variables, arXiv: 1807.11572 [math-ph] | MR