@article{ZNSL_2018_473_a6,
author = {E. V. Damaskinskiy and M. A. Sokolov},
title = {On differential operators for {Chebyshev} polynomials of several variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {99--109},
year = {2018},
volume = {473},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a6/}
}
E. V. Damaskinskiy; M. A. Sokolov. On differential operators for Chebyshev polynomials of several variables. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 99-109. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a6/
[1] T. H. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I–IV”, Indagationes Mathematicae, 77 (1974), 48–66 ; 357–381 | DOI | MR | Zbl | Zbl
[2] T. H. Koornwinder, “Two-variable analogues of the classical orthogonal polynomials”, Theory and application of special functions, ed. R. A. Askey, Academic Press, 1975, 435–495 | DOI | MR
[3] G. J. Heckman, “Root systems and hypergeometric functions: II”, Comp. Math., 64 (1987), 353–373 | MR | Zbl
[4] M. E. Hoffman, W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups”, Trans. Am. Math. Soc., 308 (1988), 91–104 | DOI | MR | Zbl
[5] R. J. Beerends, “Chebyshev polynomials in several variables and the radial part Laplace–Beltrami operator”, Trans. Am. Math. Soc., 328 (1991), 770–814 | DOI | MR
[6] A. Klimyk, J. Patera, “Orbit functions”, SIGMA, 4 (2006), 002 | MR
[7] Ken B. Dunn, Rudolf Lidl, “Generalizations of the classical Chebyshev polynomials to polynomials in two variables”, Cz. Math. J., 32 (1982), 516–528 | MR | Zbl
[8] T. Rivlin, The Chebyshev Polynomials, Wiley-Interscience publication, New York, 1974 | MR | Zbl
[9] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, FML, 1963
[10] P. K. Suetin, Ortogonalnye mnogochleny po dvum peremennym, FM, 1988