Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 85-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Laplace operator on the subspace of solenoidal vector functions of three variables vanishing with the first derivatives in the selected points $ \vec{x_{n}} $, $ n=1,\ldots, N $ is a symmetric operator with deficiency indices (3N,3N). The calculation of the scalar products of its regular analytic vectors is the central point in the construction of the resolvents of its selfadjoint extensions by means of the Kreins formula.
@article{ZNSL_2018_473_a5,
     author = {T. A. Bolokhov},
     title = {Scalar products for the regular analytic vectors of the {Laplace} operator in the solenoidal subspace},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {85--98},
     year = {2018},
     volume = {473},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/}
}
TY  - JOUR
AU  - T. A. Bolokhov
TI  - Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 85
EP  - 98
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/
LA  - ru
ID  - ZNSL_2018_473_a5
ER  - 
%0 Journal Article
%A T. A. Bolokhov
%T Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 85-98
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/
%G ru
%F ZNSL_2018_473_a5
T. A. Bolokhov. Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 85-98. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/

[1] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982, 486 pp.

[2] T. A. Bolokhov, “Rezolventy samosopryazhennykh rasshirenii operatora Laplasa na solenoidalnom podprostranstve”, Zap. nauchn. semin. POMI, 467, 2018, 21 | Zbl

[3] T. A. Bolokhov, “Rasshireniya kvadratichnoi formy vektornogo poperechnogo operatora Laplasa”, Zap. nauchn. semin. POMI, 433, 2015, 78 | Zbl

[4] T. A. Bolokhov, “Svoistva radialnoi chasti operatora Laplasa pri $l=1$ v spetsialnom skalyarnom proizvedenii”, Zap. nauchn. semin. POMI, 434, 2015, 32

[5] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh ermitovykh operatorov i ee prilozheniya. I; II”, Mat. sb., 20(63) (1947), 431–495 | Zbl

[6] V. Khatson, Dzh. S. Pim, Prilozheniya funktsionalnogo analiza i teoriya operatorov, Per. s angl., Mir, M., 1983, 432 pp.

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz i samosopryazhennost, Mir, M., 1978, 395 pp.

[8] R. G. Barrera, G. A. Estevez, J. Giraldo, “Vector spherical harmonics and their application to magnetostatics”, European J. Physics, 6:4 (1985), 287–294 | DOI

[9] P. Debye, “Der Lichtdruck auf Kugeln von bieliebigem Material”, Ann. Phys. (Leipz.), 30 (1909), 57–136 | DOI | Zbl

[10] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, GITTL, M.–L., 1952, 187–246 | Zbl

[11] M. Sh. Birman, “K teorii samosopryazhennykh rasshirenii polozhitelno opredelennykh operatorov”, Matem. sb., 38(80):4 (1956), 431–450 | Zbl