Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 85-98
Voir la notice de l'article provenant de la source Math-Net.Ru
The Laplace operator on the subspace of solenoidal vector functions of three variables vanishing with the first derivatives in the selected points $ \vec{x_{n}} $, $ n=1,\ldots, N $ is a symmetric operator with deficiency indices (3N,3N). The calculation of the scalar products of its regular analytic vectors is the central point in the construction of the resolvents of its selfadjoint extensions by means of the Kreins formula.
@article{ZNSL_2018_473_a5,
author = {T. A. Bolokhov},
title = {Scalar products for the regular analytic vectors of the {Laplace} operator in the solenoidal subspace},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--98},
publisher = {mathdoc},
volume = {473},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/}
}
TY - JOUR AU - T. A. Bolokhov TI - Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 85 EP - 98 VL - 473 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/ LA - ru ID - ZNSL_2018_473_a5 ER -
T. A. Bolokhov. Scalar products for the regular analytic vectors of the Laplace operator in the solenoidal subspace. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 85-98. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a5/