The partition function of the four-vertex model in a special external field
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 77-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The exactly solvable four-vertex model on a square grid with the fixed boundary conditions in a presence of a special external field is considered. Namely, we study a system in a linear field acting on the central column of a grid. The partition function of the model is calculated by Quantum Inverse Scattering Method. The answer is written in the determinantal form.
@article{ZNSL_2018_473_a4,
     author = {N. Bogoliubov and C. Malyshev},
     title = {The partition function of the four-vertex model in a special external field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--84},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a4/}
}
TY  - JOUR
AU  - N. Bogoliubov
AU  - C. Malyshev
TI  - The partition function of the four-vertex model in a special external field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 77
EP  - 84
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a4/
LA  - en
ID  - ZNSL_2018_473_a4
ER  - 
%0 Journal Article
%A N. Bogoliubov
%A C. Malyshev
%T The partition function of the four-vertex model in a special external field
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 77-84
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a4/
%G en
%F ZNSL_2018_473_a4
N. Bogoliubov; C. Malyshev. The partition function of the four-vertex model in a special external field. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 77-84. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a4/

[1] R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic press, San Diego, 1982 | MR | Zbl

[2] W. Li, H. Park, M. Widom, “Finite-size scaling amplitudes in a random tiling model”, J. Phys. A, 23 (1990), L573 | DOI | MR

[3] W. Li, H. Park, “Logarithmic singularity in the surface free energy near commensurate-incommensurate transitions”, J. Phys. A, 24 (1991), 257 | DOI

[4] L. D. Faddeev, “Quantum Inverse Scattering Method”, Sov. Sci. Rev. Math., C1 (1980), 107 | Zbl

[5] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[6] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523 | DOI | MR | Zbl

[7] N. M. Bogoliubov, “Four vertex model”, J. Math. Sc., New York, 151 (2008), 2816 | DOI | MR | Zbl

[8] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789 | DOI | MR | Zbl

[9] R. Stanley, Enumerative combinatorics, v. 1, 2, Cambridge University Press, Cambridge, 1996, 1999 pp. | MR

[10] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[11] R. P. Stanley, “The Conjugate Trace and Trace of a Plane Partition”, J. Comb. Theor. A, 14 (1973), 53 | DOI | MR | Zbl

[12] N. M. Bogoliubov, C. Malyshev, “The phase model and the norm-trace generating function of plane partitions”, J. Stat. Mech.: Theory and Experiment, 2018, 083101 | DOI | MR