The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 66-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The $XY$ Heisenberg spin$\frac12$ chain is considered in the fermion representation. The construction of the ground state-vector is based on the group-theoretical approach. The exact expression for the ground state-vector will allow to study the combinatorics of the correlation functions of the model.
@article{ZNSL_2018_473_a3,
     author = {N. Bogoliubov and C. Malyshev},
     title = {The ground state-vector of the $XY$ {Heisenberg} chain and the {Gauss} decomposition},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {66--76},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a3/}
}
TY  - JOUR
AU  - N. Bogoliubov
AU  - C. Malyshev
TI  - The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 66
EP  - 76
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a3/
LA  - en
ID  - ZNSL_2018_473_a3
ER  - 
%0 Journal Article
%A N. Bogoliubov
%A C. Malyshev
%T The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 66-76
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a3/
%G en
%F ZNSL_2018_473_a3
N. Bogoliubov; C. Malyshev. The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 66-76. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a3/

[1] R. Behrend, R. Di Francesco, R. Zinn-Justin, “On the weighted enumeration of alternating sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 119 (2012), 331–363 | DOI | MR | Zbl

[2] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl

[3] R. Movassagh, “Entanglement and correlation functions of the quantum Motzkin spin-chain”, J. Math. Phys., 58 (2017), 031901 | DOI | MR | Zbl

[4] N. M. Bogoliubov, C. Malyshev, Correlation Functions as Nests of Self-Avoiding Paths, arXiv: 1803.10301 | MR

[5] N. M. Bogoliubov, C. Malyshev, “The phase model and the norm-trace generating function of plane partitions”, J. Stat. Mech.: Theory and Experiment, 2018, 083101 | DOI | MR

[6] R. Stanley, Enumerative Combinatorics, v. 1, 2, Cambridge University Press, Cambridge, 1996, 1999 pp. | MR

[7] N. M. Bogoliubov, “$XX$ Heisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636–5643 | DOI | MR

[8] N. M. Bogoliubov, “Integrable models for the vicious and friendly walkers”, J. Math. Sci., 143 (2006), 2729–2737 | DOI | MR

[9] N. M. Bogoliubov, C. Malyshev, “Correlation functions of the $XX$ Heisenberg magnet and random walks of vicious walkers”, Theor. Math. Phys., 159 (2009), 563–574 | DOI | MR | Zbl

[10] N. M. Bogoliubov, C. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, St.-Petersburg Math. J., 22 (2011), 59–377 | DOI | MR | Zbl

[11] N. M. Bogoliubov, C. Malyshev, “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268 | DOI | MR | Zbl

[12] O. Salberger, V. Korepin, Fredkin Spin Chain, arXiv: 1605.03842v1 | MR

[13] F. Franchini, A. R. Its, V. E. Korepin, L. A. Takhtajan, “Entanglement spectrum for the $XY$ model in one dimension”, Quantum Information Processing, 10 (2011), 325–341 | DOI | MR | Zbl

[14] C. Krattenthaler, S. G. Mohanty, Lattice Path Combinatorics – Applications to Probability and Statistics, Encyclopedia of Statistical Sciences, Second Edition, eds. S. Kotz, N. L. Johnson, C. B. Read, N. Balakrishnan, B. Vidakovic, Wiley, New York, 2003 | MR

[15] Fumihiko Sugino, Vladimir Korepin, Renyi Entropy of Highly Entangled Spin Chains, arXiv: 1806.04049 | MR

[16] E. Lieb, T. Schultz, D. Mattis, “Two soluble models of antiferromagnetic chain”, Ann. Phys., 16 (1961), 407–466 | DOI | MR | Zbl

[17] Th. Niemeijer, “Some exact calculations on a chain of spins 1/2. I, II”, Physica, 36 (1967), 377–419 ; 39 (1968), 313–326 | DOI | DOI

[18] B. M. McCoy, “Spin correlation functions of the $XY$ model”, Phys. Rev., 173 (1968), 531 | DOI

[19] A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “On correlation functions of the $XY$-model”, J. Math. Sci., 88 (1998), 224–232 | DOI | MR

[20] A. G. Izergin, V. S. Kapitonov, N. A. Kitanin, “Equal-time temperature correlators of the one-dimensional Heisenberg $XY$-chain”, J. Math. Sci., 100 (2000), 2120–2140 | DOI | MR

[21] V. S. Kapitonov, A. G. Pronko, “Time-dependent correlators of local spins of the one-dimensional $XY$ Heisenberg chain”, J. Math. Sci., 115 (2003), 2009–2032 | DOI | MR

[22] A. Perelomov, Generalized Coherent States and Their Applications, Texts and Monographs in Physics, Springer, 1986 | MR | Zbl

[23] P. Jordan, E. Wigner, “Über das Paulische Äquivalenzverbot”, Z. Physik, 47 (1928), 631–651 | DOI | Zbl

[24] D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems, International series of monographs in natural philosophy, Pergamon, 1967 | MR