$Q$-operator for the quantum NLS model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 34-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we show that an operator introduced by A. A. Tsvetkov enjoys all the needed properties of $Q$-operator. It is shown that the $Q$-operator of the $XXX$ spin chain with spin $\ell$ turns into Tsvetkov's operator in the continuous limit when $\ell \rightarrow \infty$.
@article{ZNSL_2018_473_a2,
     author = {N. M. Belousov and S. E. Derkachov},
     title = {$Q$-operator for the quantum {NLS} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--65},
     publisher = {mathdoc},
     volume = {473},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a2/}
}
TY  - JOUR
AU  - N. M. Belousov
AU  - S. E. Derkachov
TI  - $Q$-operator for the quantum NLS model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 34
EP  - 65
VL  - 473
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a2/
LA  - ru
ID  - ZNSL_2018_473_a2
ER  - 
%0 Journal Article
%A N. M. Belousov
%A S. E. Derkachov
%T $Q$-operator for the quantum NLS model
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 34-65
%V 473
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a2/
%G ru
%F ZNSL_2018_473_a2
N. M. Belousov; S. E. Derkachov. $Q$-operator for the quantum NLS model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 34-65. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a2/