Off-shell Bethe states and the six-vertex model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 228-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the symmetric six-vertex model on a finite square lattice with the partial domain wall boundary conditions. We use the known connection of the model with the off-shell Bethe states of the Heisenberg XXZ spin chain. We obtain various formulas for the partition function, and also discuss the model in the limit of semi-infinite lattice.
@article{ZNSL_2018_473_a13,
     author = {A. G. Pronko and G. P. Pronko},
     title = {Off-shell {Bethe} states and the six-vertex model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--243},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a13/}
}
TY  - JOUR
AU  - A. G. Pronko
AU  - G. P. Pronko
TI  - Off-shell Bethe states and the six-vertex model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 228
EP  - 243
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a13/
LA  - en
ID  - ZNSL_2018_473_a13
ER  - 
%0 Journal Article
%A A. G. Pronko
%A G. P. Pronko
%T Off-shell Bethe states and the six-vertex model
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 228-243
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a13/
%G en
%F ZNSL_2018_473_a13
A. G. Pronko; G. P. Pronko. Off-shell Bethe states and the six-vertex model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 228-243. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a13/

[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[3] A. G. Izergin, D. A. Coker, V. E. Korepin,, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[4] G. Kuperberg,, “Symmetry classes of alternating-sign matrices under one roof”, Ann. Math., 156 (2002), 835–866 | DOI | MR

[5] A. V. Razumov, Yu. G. Stroganov, “Enumerations of half-turn-symmetric alternating-sign matrices of odd order”, Theor. Math. Phys., 148 (2006), 1174–1198 | DOI | MR | Zbl

[6] A. V. Razumov, Yu. G. Stroganov, “Enumeration of quarter-turn-symmetric alternating-sign matrices of odd order”, Theor. Math. Phys., 149 (2006), 1639–1650 | DOI | MR | Zbl

[7] N. M. Bogoliubov, “Five-vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21 (2010), 407–421 | DOI | MR

[8] N. M. Bogoliubov, “Scalar products of state vectors in totally asymmetric exactly solvable models on a ring”, J. Math. Sci. (N.Y.), 192 (2013), 1–13 | DOI | MR | Zbl

[9] N. M. Bogoliubov, C. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl

[10] A. G. Pronko, “The five-vertex model and enumerations of plane partitions”, J. Math. Sci. (N.Y.), 213 (2016), 756–768 | DOI | MR | Zbl

[11] O. Foda, M. Wheeler, “Partial domain wall partition functions”, JHEP, 2012:7 (2012), 186 | DOI | MR | Zbl

[12] P. Bleher, K. Liechty, “Six-vertex model with partial domain wall boundary conditions: Ferroelectric phase”, J. Math. Phys., 56 (2015), 023302 | DOI | MR | Zbl

[13] K. Eloranta, “Diamond ice”, J. Stat. Phys., 96 (1999), 1091–1109 | DOI | MR | Zbl

[14] P. Zinn-Justin, The influence of boundary conditions in the six-vertex model, arXiv: cond-mat/0205192

[15] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl

[16] F. Colomo, A. Sportiello, “Arctic curves of the six-vertex model on generic domains: the Tangent Method”, J. Stat. Phys., 164 (2016), 1488–1523 | DOI | MR | Zbl

[17] I. Lyberg, V. Korepin, G. A. P. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 | DOI | MR | Zbl

[18] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, San Diego, CA, 1982 | MR | Zbl

[19] F. Colomo, A. G. Pronko, “An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions”, Theor. Math. Phys., 171 (2012), 641–654 | DOI | MR | Zbl

[20] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[21] A. G. Izergin, V. E. Korepin, N. Yu. Reshetikhin, “Correlation functions in a one-dimensional Bose gas”, J. Phys. A, 20 (1987), 4799–4822 | DOI | MR

[22] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn., Oxford University Press, Oxford, 1995 | MR | Zbl

[23] N. M. Bogoliubov, A. G. Pronko, M. B. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A, 35 (2002), 5525–5541 | DOI | MR | Zbl

[24] F. Colomo, A. G. Pronko, “Emptiness formation probability in the domain-wall six-vertex model”, Nucl. Phys. B, 798 (2008), 340–362 | DOI | MR | Zbl

[25] G. Kuberberg, “Another proof of the alternating-sign matrix conjecture”, Int. Res. Math. Notices, 1996 (1996), 139–150 | DOI | MR

[26] L.-H. Gwa, H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian”, Phys. Rev. Lett., 68 (1992), 725–728 | DOI | MR | Zbl

[27] L. Cantini, Private communication

[28] C. González-Ballestero, L. M. Robledo, G. F. Bertsch, “Numeric and symbolic evaluation of the pfaffian of general skew-symmetric matrices”, Comput. Phys. Commun., 182 (2011), 2213–2218 | DOI | MR | Zbl