@article{ZNSL_2018_473_a12,
author = {V. B. Matveev and A. O. Smirnov},
title = {Two-phase periodic solutions to the {AKNS} hierarchy equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {205--227},
year = {2018},
volume = {473},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a12/}
}
V. B. Matveev; A. O. Smirnov. Two-phase periodic solutions to the AKNS hierarchy equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 205-227. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a12/
[1] A. O. Smirnov, V. B. Matveev, Some comments on continuous symmetries of AKNS hierarchy equations and their solutions, 2015, arXiv: 1509.1134 | MR
[2] V. B. Matveev, A. O. Smirnov, “Resheniya tipa “voln-ubiits” uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, TMF, 186:2 (2016), 191–220 | DOI | Zbl
[3] V. B. Matveev, A. O. Smirnov, “AKNS and NLS hierarchies, MRW solutions, $P_n$ breathers, and beyond”, J. Math. Physics, 59 (2018), 091419–091462 | DOI | MR
[4] V. E. Zakharov, L. D. Faddeev, “Korteweg-de Vries equation: A completely integrable Hamiltonian system”, Functional Analysis and Its Applications, 5:4 (1971), 280–287 | DOI | MR
[5] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:9 (1988), 483–488 | DOI | MR
[6] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain”, J. Math. Phys., 33 (1992), 1807–1816 | DOI | MR | Zbl
[7] M. Daniel, K. Porsezian, M. Lakshmanan, “On the integrable models of the higher order water wave equation”, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR
[8] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805 | DOI | MR | Zbl
[9] C. Q. Dai, J. F. Zhang, “New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients”, J. Phys. A, 39 (2006), 723–737 | DOI | MR | Zbl
[10] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81 (2010), 046602 | DOI | MR
[11] L. Li, Zh. Wu, L. Wang, J. He, “High-order rogue waves for the Hirota equation”, Annals of Physics, 334 (2013), 198–211 | DOI | MR | Zbl
[12] J. S. He, Ch. Zh. Li, K. Porsezian, “Rogue waves of the Hirota and the Maxwell-Bloch equations”, Phys. Rev. E, 87:1 (2013), 012913 | DOI
[13] L. H. Wang, K. Porsezian, J. S. He, “Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation”, Phys. Rev. E, 87:5 (2013), 053202 | DOI
[14] A. Ankiewicz, N. Akhmediev, “High-order integrable evolution equation and its soliton solutions”, Phys. Lett. A, 378 (2014), 358–361 | DOI | MR | Zbl
[15] A. Chowdury, W. Krolikowski, N. Akhmediev, “Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits”, Phys. Rev. E, 96:4 (2017), 042209 | DOI | MR
[16] A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions”, Phys. Rev. E, 91 (2015), 022919 | DOI | MR
[17] A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev, “Infinite hierarchy of nonlinear Schrödinger equations and their solutions”, Phys. Rev. E, 93:1 (2016), 012206 | DOI | MR
[18] A. Ankiewicz, N. Akhmediev, “Rogue wave-type solutions for the infinite integrable nonlinear Schrödinger hierarchy”, Phys. Rev. E, 96:1 (2017), 012219 | DOI | MR
[19] D. Kedziora, A. Ankiewicz, A. Chowdury, N. Akhmediev, “Integrable equations of the infinite nonlinear Schrödingier equation hierarchy with time variable coefficients”, Chaos, 25 (2015), 103114 | DOI | MR | Zbl
[20] A. R. Its, V. P. Kotlyarov, “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, DAN USSR, Ser. A, 11 (1976), 965–968
[21] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynamics, Springer, 1994 | MR
[22] F. Gesztesy, H. Holden, Soliton equation and their algebro-geometric solutions, v. 1, Cambridge Stud. in Adv. Math., 79, $(1+1)$-dimensional continuous models, Cambridge University Press, 2003 | MR
[23] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega-de Friza”, Matem. Sbornik, 185:8 (1994), 103–114 | Zbl
[24] A. O. Smirnov, “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | DOI | Zbl
[25] B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | Zbl
[26] G. F. Beiker, Abelevy funktsii. Teorema Abelya i svyazannaya s nei teoriya teta-funktsii, MTsNMO, M., 2008
[27] G. Springer, Introduction to Riemann surfaces, Addison-Wesley, 1957 | MR | Zbl
[28] H. M. Farkas, I. Kra, Riemann surfaces, Springer, New York, 1980 | MR | Zbl
[29] D. Mamford, Lektsii o teta-funktsiyakh, M., Mir, 1988
[30] J. D. Fay, Theta-functions on {R}iemann surfaces, Lect. Notes Math., 352, Springer, 1973 | DOI | MR | Zbl
[31] A. O. Smirnov, “Matrichnyi analog teoremy Appelya i reduktsii mnogomernykh teta-funktsii Rimana”, Matem. Sbornik, 175:7 (1987), 382–391 | Zbl
[32] A. O. Smirnov, “Konechnozonnye resheniya abelevoi tsepochki Tody roda 4 i 5 v ellipticheskikh funktsiyakh”, TMF, 78:1 (1989), 11–21
[33] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970
[34] A. O. Smirnov, V. B. Matveev, Yu. A. Gusman, N. V Landa, Spectral curves for the rogue waves, 2017, arXiv: 1712.09309 | MR
[35] A. O. Smirnov, “Reshenie nelineinogo uravneniya Shredingera v vide dvukhfaznykh strannykh voln”, TMF, 173:1 (2012), 89–103 | DOI | Zbl
[36] A. O. Smirnov, “Periodicheskie dvukhfaznye “volny-ubiitsy””, Matem. Zametki, 94:6 (2013), 871–883 | DOI | Zbl