Asymptotics of integrals of some functions related to the degenerate third Painlevé equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 194-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is shown how to calculate asymptotics of integrals over the positive semi-axis of two functions related to the Degenerate Third Painlevé Equation (dP3). As an example, the corresponding results for the meromorphic solution of the dP3 vanishing at the origin are presented.
@article{ZNSL_2018_473_a11,
     author = {A. V. Kitaev and A. Vartanyan},
     title = {Asymptotics of integrals of some functions related to the degenerate third {Painlev\'e} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--204},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/}
}
TY  - JOUR
AU  - A. V. Kitaev
AU  - A. Vartanyan
TI  - Asymptotics of integrals of some functions related to the degenerate third Painlevé equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 194
EP  - 204
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/
LA  - en
ID  - ZNSL_2018_473_a11
ER  - 
%0 Journal Article
%A A. V. Kitaev
%A A. Vartanyan
%T Asymptotics of integrals of some functions related to the degenerate third Painlevé equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 194-204
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/
%G en
%F ZNSL_2018_473_a11
A. V. Kitaev; A. Vartanyan. Asymptotics of integrals of some functions related to the degenerate third Painlevé equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 194-204. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/

[1] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: I”, Inverse Problems, 20:4 (2004), 1165–1206 | DOI | MR | Zbl

[2] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II”, Inverse Problems, 26:10 (2010), 105010 | DOI | MR | Zbl

[3] K. Okamoto, “On the $\tau$-function of the Painlevé equations”, Physica, 2D (1981), 525–535 | MR | Zbl

[4] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II”, Physica, 2D (1981), 407–448 | MR | Zbl

[5] C. M. Cosgrove, G. Scofus, “Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree”, Stud. Appl. Math., 88:1 (1993), 25–87 | DOI | MR | Zbl

[6] F. Bureau, “Équations différentielles du second ordre en Y et du second degré en Ÿ dont l'intégrale générale est à points critiques fixes”, Ann. Mat. Pura Appl. (4), 91 (1972), 163–281 | DOI | MR | Zbl

[7] A. V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, arXiv: 1809.00122

[8] J. Baik, R. Buckingham, J. DiFranco, A. Its, “Total integrals of global solutions to Painlevé II”, Nonlinearity, 22:5 (2009), 1021–1061 | DOI | MR | Zbl

[9] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 (based, in part, on notes left by Harry Bateman) | MR