@article{ZNSL_2018_473_a11,
author = {A. V. Kitaev and A. Vartanyan},
title = {Asymptotics of integrals of some functions related to the degenerate third {Painlev\'e} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {194--204},
year = {2018},
volume = {473},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/}
}
TY - JOUR AU - A. V. Kitaev AU - A. Vartanyan TI - Asymptotics of integrals of some functions related to the degenerate third Painlevé equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 194 EP - 204 VL - 473 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/ LA - en ID - ZNSL_2018_473_a11 ER -
A. V. Kitaev; A. Vartanyan. Asymptotics of integrals of some functions related to the degenerate third Painlevé equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 194-204. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a11/
[1] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: I”, Inverse Problems, 20:4 (2004), 1165–1206 | DOI | MR | Zbl
[2] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II”, Inverse Problems, 26:10 (2010), 105010 | DOI | MR | Zbl
[3] K. Okamoto, “On the $\tau$-function of the Painlevé equations”, Physica, 2D (1981), 525–535 | MR | Zbl
[4] M. Jimbo, T. Miwa, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II”, Physica, 2D (1981), 407–448 | MR | Zbl
[5] C. M. Cosgrove, G. Scofus, “Painlevé Classification of a Class of Differential Equations of the Second Order and Second Degree”, Stud. Appl. Math., 88:1 (1993), 25–87 | DOI | MR | Zbl
[6] F. Bureau, “Équations différentielles du second ordre en Y et du second degré en Ÿ dont l'intégrale générale est à points critiques fixes”, Ann. Mat. Pura Appl. (4), 91 (1972), 163–281 | DOI | MR | Zbl
[7] A. V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, arXiv: 1809.00122
[8] J. Baik, R. Buckingham, J. DiFranco, A. Its, “Total integrals of global solutions to Painlevé II”, Nonlinearity, 22:5 (2009), 1021–1061 | DOI | MR | Zbl
[9] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 (based, in part, on notes left by Harry Bateman) | MR