Conformal limit for dimer models on the hexagonal lattice
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 174-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this note we derive the asymptotical behavior of local correlation functions in dimer models on a domain of the hexagonal lattice in the continuum limit, when the size of the domain goes to infinity and parameters of the model scale appropriately.
@article{ZNSL_2018_473_a10,
     author = {D. Keating and N. Reshetikhin and A. Sridhar},
     title = {Conformal limit for dimer models on the hexagonal lattice},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--193},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/}
}
TY  - JOUR
AU  - D. Keating
AU  - N. Reshetikhin
AU  - A. Sridhar
TI  - Conformal limit for dimer models on the hexagonal lattice
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 174
EP  - 193
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/
LA  - en
ID  - ZNSL_2018_473_a10
ER  - 
%0 Journal Article
%A D. Keating
%A N. Reshetikhin
%A A. Sridhar
%T Conformal limit for dimer models on the hexagonal lattice
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 174-193
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/
%G en
%F ZNSL_2018_473_a10
D. Keating; N. Reshetikhin; A. Sridhar. Conformal limit for dimer models on the hexagonal lattice. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 174-193. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/

[1] R. Kenyon, “Height Fluctuations in the Honeycomb Dimer Model”, Commun. Math. Phys., 281 (2008), 675 | DOI | MR | Zbl

[2] A. Bufetov, A. Knizel, “Asymptotics of random domino tilings of rectangular Aztec diamonds”, Ann. de l'Inst. Henri Poincare, 2016 (to appear) | MR

[3] L. Petrov, “Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field”, Ann. Probab., 43:1 (2014), 1–43, arXiv: 1206.5123 | DOI | MR | Zbl

[4] W. Kasteleyn, “Graph theory and crystal physics”, Graph Theory and Theoretical Physics, Academic Press, London, 43–110 | MR

[5] M. Fisher, “Statistical mechanics of dimers on a plane lattice”, Phys. Review, 124:6 (1961), 1664 | DOI | MR | Zbl

[6] D. Cimasoni, N. Reshetikhin, “Dimers on surface graphs and spin structures”, Commun. Math. Phys., 275:1 (2007), 187–208, arXiv: 0704.0273 | DOI | MR | Zbl

[7] A. Okounkov, N. Reshetikhin, “Random skew plane partitions and the Pearcey process”, Comm. Math. Phys., 269:3, February (2007), arXiv: math.CO/0503508 | DOI | MR | Zbl

[8] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, arXiv: math-ph/0507007 | MR