@article{ZNSL_2018_473_a10,
author = {D. Keating and N. Reshetikhin and A. Sridhar},
title = {Conformal limit for dimer models on the hexagonal lattice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--193},
year = {2018},
volume = {473},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/}
}
D. Keating; N. Reshetikhin; A. Sridhar. Conformal limit for dimer models on the hexagonal lattice. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 174-193. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/
[1] R. Kenyon, “Height Fluctuations in the Honeycomb Dimer Model”, Commun. Math. Phys., 281 (2008), 675 | DOI | MR | Zbl
[2] A. Bufetov, A. Knizel, “Asymptotics of random domino tilings of rectangular Aztec diamonds”, Ann. de l'Inst. Henri Poincare, 2016 (to appear) | MR
[3] L. Petrov, “Asymptotics of uniformly random lozenge tilings of polygons. Gaussian free field”, Ann. Probab., 43:1 (2014), 1–43, arXiv: 1206.5123 | DOI | MR | Zbl
[4] W. Kasteleyn, “Graph theory and crystal physics”, Graph Theory and Theoretical Physics, Academic Press, London, 43–110 | MR
[5] M. Fisher, “Statistical mechanics of dimers on a plane lattice”, Phys. Review, 124:6 (1961), 1664 | DOI | MR | Zbl
[6] D. Cimasoni, N. Reshetikhin, “Dimers on surface graphs and spin structures”, Commun. Math. Phys., 275:1 (2007), 187–208, arXiv: 0704.0273 | DOI | MR | Zbl
[7] A. Okounkov, N. Reshetikhin, “Random skew plane partitions and the Pearcey process”, Comm. Math. Phys., 269:3, February (2007), arXiv: math.CO/0503508 | DOI | MR | Zbl
[8] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation, arXiv: math-ph/0507007 | MR