Conformal limit for dimer models on the hexagonal lattice
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 174-193
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we derive the asymptotical behavior of local correlation functions in dimer models on a domain of the hexagonal lattice in the continuum limit, when the size of the domain goes to infinity and parameters of the model scale appropriately.
@article{ZNSL_2018_473_a10,
author = {D. Keating and N. Reshetikhin and A. Sridhar},
title = {Conformal limit for dimer models on the hexagonal lattice},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--193},
publisher = {mathdoc},
volume = {473},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/}
}
TY - JOUR AU - D. Keating AU - N. Reshetikhin AU - A. Sridhar TI - Conformal limit for dimer models on the hexagonal lattice JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 174 EP - 193 VL - 473 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/ LA - en ID - ZNSL_2018_473_a10 ER -
D. Keating; N. Reshetikhin; A. Sridhar. Conformal limit for dimer models on the hexagonal lattice. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 174-193. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a10/