Necessary conditions of point equivalence of second-order ODEs to the sixth Painlev\'e equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 17-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Equivalence problem for a projective type scalar second-order ordinary differential equations is considered with respect to invertible point changes of variables. Invariants of the equivalence transformation group of this family of equations are used to find the necessary conditions of the equivalence to the sixth Painlevé equation.
@article{ZNSL_2018_473_a1,
author = {Yu. Yu. Bagderina},
title = {Necessary conditions of point equivalence of second-order {ODEs} to the sixth {Painlev\'e} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--33},
publisher = {mathdoc},
volume = {473},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a1/}
}
TY - JOUR AU - Yu. Yu. Bagderina TI - Necessary conditions of point equivalence of second-order ODEs to the sixth Painlev\'e equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 17 EP - 33 VL - 473 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a1/ LA - ru ID - ZNSL_2018_473_a1 ER -
Yu. Yu. Bagderina. Necessary conditions of point equivalence of second-order ODEs to the sixth Painlev\'e equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 17-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a1/