@article{ZNSL_2018_473_a1,
author = {Yu. Yu. Bagderina},
title = {Necessary conditions of point equivalence of second-order {ODEs} to the sixth {Painlev\'e} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--33},
year = {2018},
volume = {473},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a1/}
}
Yu. Yu. Bagderina. Necessary conditions of point equivalence of second-order ODEs to the sixth Painlevé equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 17-33. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a1/
[1] R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications”, J. École Polytechnique, 59 (1889), 7–76
[2] A. Tresse, “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18 (1894), 1–88 | DOI | MR
[3] E. Cartan, “Sur les variétés à connexion projective”, Bull. Soc. Math. France, 52 (1924), 205–241 | DOI | MR | Zbl
[4] S. Lie, “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten. III”, Arch. Mat. Naturvidensk, 8 (1883), 371–458
[5] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939
[6] N. Kamran, K. G. Lamb, W. F. Shadwick, “The local equivalence problem for $y''=F(x,y,y')$ and the Painlevé transcendents”, J. Diff. Geom., 22 (1985), 139–150 | DOI | MR | Zbl
[7] A. V. Bocharov, V. V. Sokolov, S. I. Svinolupov, On some equivalence problems for differential equations, Preprint ESI-54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna, 1993, 12 pp. | Zbl
[8] J. Hietarinta, V. Dryuma, Is my ODE a Painlevé equation in disguise?, J. Nonlin. Math. Phys., 9, Suppl. 1 (2002), 67–74 | DOI | MR | Zbl
[9] R. Dridi, “On the geometry of the first and second Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 125201 | DOI | MR | Zbl
[10] V. V. Kartak, “Point classification of second order ODEs and its application to Painlevé equations”, J. Nonlin. Math. Phys., 20, Suppl. 1 (2013), 110–129 | DOI | MR
[11] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations”, J. Phys. A: Math. Theor., 46 (2013), 295201 | DOI | MR | Zbl
[12] V. V. Kartak, “"Painlevé 34" equation: equivalence test”, Commun. Nonlin. Sci. Numer. Simul., 19:9 (2014), 2993–3000 | DOI | MR
[13] Yu. Yu. Bagderina, “Ekvivalentnost ODU vtorogo poryadka uravneniyam tipa pervogo uravneniya Penleve”, Ufimskii matematicheskii zhurnal, 7:1 (2015), 19–30 | Zbl
[14] Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, J. Math. Phys., 56 (2015), 013507 | DOI | MR | Zbl
[15] Yu. Yu. Bagderina, “Ekvivalentnost obyknovennykh differentsialnykh uravnenii vtorogo poryadka uravneniyam Penleve”, Teor. matem. fizika, 182:2 (2015), 256–276 | DOI | Zbl
[16] R. Fuchs, “Sur quelques équations différentielles linéaires du second ordre”, Comptes Rendus Acad. Sci. Paris, 141 (1905), 555–558
[17] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes”, Acta Mathematica, 33 (1910), 1–55 | DOI | MR
[18] M. Jimbo, T. Miwa, “Studies of holonomic quantum fields. XVII”, Proc. Japan Acad. Ser. A, 56 (1980), 405–410 | DOI | MR
[19] P. J. Forrester, N. S. Witte, “Application of the $\tau$-function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits”, Nagoya Math. J., 174 (20014), 29–114 | DOI | MR
[20] H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Commun. Math. Phys., 220 (2001), 165–220 | DOI | MR | Zbl
[21] A. S. Fokas, R. A. Leo, L. Martina, G. Soliani, “The scaling reduction of the three-wave resonant system and the Painlevé VI equation”, Phys. Lett. A, 115 (1986), 329–332 | DOI | MR
[22] A. V. Kitaev, “On similarity reductions of the three-wave resonant system to the Painlevé equations”, J. Phys. A: Math. Gen., 23 (1990), 3543–3553 | DOI | MR | Zbl
[23] L. J. Mason, N. M. Woodhouse, “Self-duality and the Painlevé transcendents”, Nonlinearity, 6 (1993), 569–581 | DOI | MR | Zbl
[24] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, a Modern Theory of Special Functions, Vieweg, Braunschweig, 1991 | MR
[25] M. V. Babich, L. A. Bordag, “Projective differential geometrical structure of the Painlevé equations”, J. Differ. Equations, 157 (1999), 452–485 | DOI | MR | Zbl
[26] Yu. I. Manin, Sixt Painlevé Equation, Universal Elliptic Curve, and Mirror of $\mathbb{P}^2$, Preprint MPI 96-114, Max–Planck–Institut für Mathematik, Bonn, 1996, 20 pp. | MR
[27] Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, J. Phys. A: Math. Theor., 49 (2016), 155202 | DOI | MR | Zbl