@article{ZNSL_2018_473_a0,
author = {M. V. Babich},
title = {On parametrization of symplectic quotient of {Cartesian} product of coadjoint orbits of complex general linear group with respect to its diagonal action},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--16},
year = {2018},
volume = {473},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/}
}
TY - JOUR AU - M. V. Babich TI - On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 7 EP - 16 VL - 473 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/ LA - en ID - ZNSL_2018_473_a0 ER -
%0 Journal Article %A M. V. Babich %T On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 7-16 %V 473 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/ %G en %F ZNSL_2018_473_a0
M. V. Babich. On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 7-16. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/
[1] M. V. Babich, S. E. Derkachov, “On rational symplectic parametrization of coajoint orbit of $GL(N)$. Diagonalizable case”, Algebra Analiz, 22:3 (2010), 16–30 (in Russian) | MR
[2] M. V. Babich,, “Birational Darboux Coordinates on (Co)Adjoint Orbits of $GL(N,\mathbb{C})$”, Funct. Analys. Applic., 50:1 (2016), 17–30 | DOI | MR | Zbl
[3] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. Nauchn. Semin. POMI, 432, 2015, 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p068.pdf | MR | Zbl
[4] M. V. Babich, “Young tableaux and stratification of space of complex square matrices”, Zap. Nauchn. Semin. POMI, 433, 2015, 41–64 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v433/p041.pdf | MR
[5] S. E. Derkachov, A. N. Manashov, “R-matrix and Baxter Q-operators for the noncompact SL(N;C) invariant spin chain”, SIGMA, 2 (2006), 084 pp., arXiv: nlin.SI/0612003 | MR | Zbl
[6] M. V. Babich, “About Coordinates on the Phase Spaces of the Schlesinger System and the Garnier-Painlevé $6$ System”, Dokl. Math., 75:1 (2007), 71 | DOI | MR | Zbl
[7] A. G. Reiman, M. A. Semenov-Tyan'-Shanskii, Integrable systems. Group-theoretic approach, Sovremennaya Matematika, Inst. for Computer Research, M.–Izhevsk, 2003 (in Russian)
[8] I. M. Gelfand, M. I. Najmark, Unitary representation of classical groups, Trudy Mat. Instituta V. A. Steklova, 36, 1950 | MR