On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 7-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of the coordinatization of the manifold constructed via the Marsden–Weinstein quotient is considered. Rational canonical coordinates on the symplectic reduction with respect to the diagonal action of the general linear group on the Cartesian product of coadjoint orbits in the case of the complex general linear group are constructed. The coordinates on the algebraically-open subset of the quotient space are presented. The method is based on the iteration process used for the construction of the projection-flag coordinates, and works if the matrices forming the orbits have a rich enough set of the invariant subspaces.
@article{ZNSL_2018_473_a0,
     author = {M. V. Babich},
     title = {On parametrization of symplectic quotient of {Cartesian} product of coadjoint orbits of complex general linear group with respect to its diagonal action},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--16},
     year = {2018},
     volume = {473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/}
}
TY  - JOUR
AU  - M. V. Babich
TI  - On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 16
VL  - 473
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/
LA  - en
ID  - ZNSL_2018_473_a0
ER  - 
%0 Journal Article
%A M. V. Babich
%T On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-16
%V 473
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/
%G en
%F ZNSL_2018_473_a0
M. V. Babich. On parametrization of symplectic quotient of Cartesian product of coadjoint orbits of complex general linear group with respect to its diagonal action. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 25, Tome 473 (2018), pp. 7-16. http://geodesic.mathdoc.fr/item/ZNSL_2018_473_a0/

[1] M. V. Babich, S. E. Derkachov, “On rational symplectic parametrization of coajoint orbit of $GL(N)$. Diagonalizable case”, Algebra Analiz, 22:3 (2010), 16–30 (in Russian) | MR

[2] M. V. Babich,, “Birational Darboux Coordinates on (Co)Adjoint Orbits of $GL(N,\mathbb{C})$”, Funct. Analys. Applic., 50:1 (2016), 17–30 | DOI | MR | Zbl

[3] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. Nauchn. Semin. POMI, 432, 2015, 36–57 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v432/p068.pdf | MR | Zbl

[4] M. V. Babich, “Young tableaux and stratification of space of complex square matrices”, Zap. Nauchn. Semin. POMI, 433, 2015, 41–64 ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v433/p041.pdf | MR

[5] S. E. Derkachov, A. N. Manashov, “R-matrix and Baxter Q-operators for the noncompact SL(N;C) invariant spin chain”, SIGMA, 2 (2006), 084 pp., arXiv: nlin.SI/0612003 | MR | Zbl

[6] M. V. Babich, “About Coordinates on the Phase Spaces of the Schlesinger System and the Garnier-Painlevé $6$ System”, Dokl. Math., 75:1 (2007), 71 | DOI | MR | Zbl

[7] A. G. Reiman, M. A. Semenov-Tyan'-Shanskii, Integrable systems. Group-theoretic approach, Sovremennaya Matematika, Inst. for Computer Research, M.–Izhevsk, 2003 (in Russian)

[8] I. M. Gelfand, M. I. Najmark, Unitary representation of classical groups, Trudy Mat. Instituta V. A. Steklova, 36, 1950 | MR