Systems of generators of matrix incidence algebras over finite fields
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 120-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies two numerical characteristics of matrix incidence algebras over finite fields associated with generating sets of such algebras: the minimal cardinality of a generating set and the length of an algebra. Generating sets are understood in the usual sense, the identity of the algebra being considered as a word of length $0$ in generators, and also in the strict sense, where this assumption is not used. A criterion for a subset to generate an incidence algebra in the strict sense is obtained. For all matrix incidence algebras, the minimum cardinality of a generating set and a generating set in the strict sense are calculated as functions of the field cardinality and the order of the matrices. Some new results on the lengths of such algebras are obtained. In particular, the length of the algebra of “almost” diagonal matrices is calculated, and a new upper bound for the length of an arbitrary matrix incidence algebra is obtained.
@article{ZNSL_2018_472_a9,
     author = {N. A. Kolegov and O. V. Markova},
     title = {Systems of generators of matrix incidence algebras over finite fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--144},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/}
}
TY  - JOUR
AU  - N. A. Kolegov
AU  - O. V. Markova
TI  - Systems of generators of matrix incidence algebras over finite fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 120
EP  - 144
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/
LA  - ru
ID  - ZNSL_2018_472_a9
ER  - 
%0 Journal Article
%A N. A. Kolegov
%A O. V. Markova
%T Systems of generators of matrix incidence algebras over finite fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 120-144
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/
%G ru
%F ZNSL_2018_472_a9
N. A. Kolegov; O. V. Markova. Systems of generators of matrix incidence algebras over finite fields. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 120-144. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/

[1] Yu. A. Al'pin, Kh. D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl

[2] A. Guterman, O. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl

[3] A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl

[4] L. Halbeisen, M. Hamilton, P. Ružička, “Minimal generating sets of groups, rings, and fields”, Quaest. Math., 30:3 (2007), 355–363 | DOI | MR | Zbl

[5] M. C. Iovanov, G. D. Koffi, Incidence algebras and their representation theory, 2017, arXiv: 1702.03356

[6] V. P. Kostov, “The minimal number of generators of a matrix algebra”, J. Dyn. Control Syst., 4:2 (1996), 549–555 | DOI | MR | Zbl

[7] T. Laffey, O. Markova, H. Šmigoc, “The effect of assuming the identity as a generator on the length of the matrix algebra”, Linear Algebra Appl., 498 (2016), 378–393 | DOI | MR | Zbl

[8] V. Lomonosov, P. Rosenthal, “The simplest proof of Burnside's theorem on matrix algebras”, Linear Algebra Appl., 383 (2004), 45–47 | DOI | MR | Zbl

[9] W. E. Longstaff, P. Rosenthal, “Generators of matrix incidence algebras”, Australas. J. Combin., 22 (2000), 117–121 | MR | Zbl

[10] W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl

[11] V. E. Marenich, “Svoistva sopryazheniya v algebrakh intsidentnosti”, Fundam. prikl. matem., 9:3 (2003), 111–123

[12] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundam. prikl. matem., 13:4 (2007), 165–197

[13] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sbornik, 200:12 (2009), 41–62 | DOI | Zbl

[14] O. V. Markova, “O svyazi dliny algebry i indeksa nilpotentnosti ee radikala Dzhekobsona”, Mat. zametki, 94:5 (2013), 682–688 | DOI | Zbl

[15] O. V. Markova, “Kommutativnye nilpotentnye podalgebry indeksa nilpotentnosti $n-1$ v algebre matrits poryadka $n$”, Zap. nauchn. semin. POMI, 453, 2016, 219–242

[16] N. A. Nachev, “Polinomialnye tozhdestva v algebrakh inidentnosti”, UMN, 32:6 (1977), 233–234

[17] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[18] R. Pirs, Assotsiativnye algebry, Mir, 1986

[19] G.-C. Rota, “On the foundations of combinatorial theory, I. Theory of Möbius functions”, Z. Wahrscheinlichkeitsrechnung, 2 (1964), 340–368 | DOI | MR | Zbl

[20] E. Spiegel, C. J. O'Donnel, Incidence algebras, Marcel Dekker, 1997 | MR | Zbl

[21] D. T. Tapkin, “Koltsa formalnykh matrits i obobschenie algebry intsidentnosti”, Chebyshevskii sb., 16:3 (2015), 422–449

[22] M. Radjabalipour, P. Rosenthal, B. R. Yahaghi, “Burnside's theorem for matrix rings over division rings”, Linear Algebra Appl., 383 (2004), 29–44 | DOI | MR | Zbl

[23] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, 1970