@article{ZNSL_2018_472_a9,
author = {N. A. Kolegov and O. V. Markova},
title = {Systems of generators of matrix incidence algebras over finite fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--144},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/}
}
N. A. Kolegov; O. V. Markova. Systems of generators of matrix incidence algebras over finite fields. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 120-144. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a9/
[1] Yu. A. Al'pin, Kh. D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl
[2] A. Guterman, O. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl
[3] A. Guterman, T. Laffey, O. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[4] L. Halbeisen, M. Hamilton, P. Ružička, “Minimal generating sets of groups, rings, and fields”, Quaest. Math., 30:3 (2007), 355–363 | DOI | MR | Zbl
[5] M. C. Iovanov, G. D. Koffi, Incidence algebras and their representation theory, 2017, arXiv: 1702.03356
[6] V. P. Kostov, “The minimal number of generators of a matrix algebra”, J. Dyn. Control Syst., 4:2 (1996), 549–555 | DOI | MR | Zbl
[7] T. Laffey, O. Markova, H. Šmigoc, “The effect of assuming the identity as a generator on the length of the matrix algebra”, Linear Algebra Appl., 498 (2016), 378–393 | DOI | MR | Zbl
[8] V. Lomonosov, P. Rosenthal, “The simplest proof of Burnside's theorem on matrix algebras”, Linear Algebra Appl., 383 (2004), 45–47 | DOI | MR | Zbl
[9] W. E. Longstaff, P. Rosenthal, “Generators of matrix incidence algebras”, Australas. J. Combin., 22 (2000), 117–121 | MR | Zbl
[10] W. E. Longstaff, P. Rosenthal, “On the lengths of irreducible pairs of complex matrices”, Proc. Amer. Math. Soc., 139:11 (2011), 3769–3777 | DOI | MR | Zbl
[11] V. E. Marenich, “Svoistva sopryazheniya v algebrakh intsidentnosti”, Fundam. prikl. matem., 9:3 (2003), 111–123
[12] O. V. Markova, “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundam. prikl. matem., 13:4 (2007), 165–197
[13] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sbornik, 200:12 (2009), 41–62 | DOI | Zbl
[14] O. V. Markova, “O svyazi dliny algebry i indeksa nilpotentnosti ee radikala Dzhekobsona”, Mat. zametki, 94:5 (2013), 682–688 | DOI | Zbl
[15] O. V. Markova, “Kommutativnye nilpotentnye podalgebry indeksa nilpotentnosti $n-1$ v algebre matrits poryadka $n$”, Zap. nauchn. semin. POMI, 453, 2016, 219–242
[16] N. A. Nachev, “Polinomialnye tozhdestva v algebrakh inidentnosti”, UMN, 32:6 (1977), 233–234
[17] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[18] R. Pirs, Assotsiativnye algebry, Mir, 1986
[19] G.-C. Rota, “On the foundations of combinatorial theory, I. Theory of Möbius functions”, Z. Wahrscheinlichkeitsrechnung, 2 (1964), 340–368 | DOI | MR | Zbl
[20] E. Spiegel, C. J. O'Donnel, Incidence algebras, Marcel Dekker, 1997 | MR | Zbl
[21] D. T. Tapkin, “Koltsa formalnykh matrits i obobschenie algebry intsidentnosti”, Chebyshevskii sb., 16:3 (2015), 422–449
[22] M. Radjabalipour, P. Rosenthal, B. R. Yahaghi, “Burnside's theorem for matrix rings over division rings”, Linear Algebra Appl., 383 (2004), 29–44 | DOI | MR | Zbl
[23] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, 1970