Projection methods in Krylov subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 103-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers preconditioned iterative methods in Krylov subspaces for solving large systems of linear algebraic equations with sparse coefficient matrices arising in solvibg multidimensional boundary-value problems by finite volume or finite element methods of different orders on unstructured grids. Block versions of the weighted Cimmino methods, based on various orthogonal and/or variational approaches and realizing preconditioning functions for two-level multi-preconditioned semi-conjugate residual algorithms with periodic restarts, are proposed. At the inner iterations between restarts, additional acceleration is achieved by applying deflation methods, providing low-rank approximations of the original matrix and playing the part of an additional preconditioner. At the outer level of the Krylov process, in order to compensate the convergence deceleration caused by restricting the number of the orthogonalized direction vectors, restarted approximations are corrected by using the least squares method. Scalable parallelization of the methods considered, based on domain decomposition, where the commonly used block Jacobi–Schwarz iterative processes is replaced by the block Cimmino–Schwarz algorithm, is discussed. Hybrid programming technologies for implementing different stages of the computational process on heterogeneous multi-processor systems with distributed and hierarchical shared memory are described.
@article{ZNSL_2018_472_a8,
     author = {V. P. Il'in},
     title = {Projection methods in {Krylov} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--119},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a8/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Projection methods in Krylov subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 103
EP  - 119
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a8/
LA  - ru
ID  - ZNSL_2018_472_a8
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Projection methods in Krylov subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 103-119
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a8/
%G ru
%F ZNSL_2018_472_a8
V. P. Il'in. Projection methods in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 103-119. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a8/

[1] S. Kaczmarz, “Angenaherte Auflosung von Systemen lineare Gleichungen”, Bull. Int. Acad. Polon. Sci. Lett., 35 (1937), 355–357

[2] G. Cimmino, “Calcolo approssimati de soluzioni dei sistemi di equazioni linear”, Ric. Sci., 11.9 (1938), 326–333

[3] V. P. Ilin, Metody i tekhnologii konechnykh elementov, izd. IVMiMG SO RAN, Novosibirsk, 2007

[4] W. Hackbush, Multigrid Methods and Applicatios, Springer-Verlag, Berlin, 1985 | MR

[5] V. P. Ilin, “Ob iteratsionnom metode Kachmazha i ego obobscheniyakh”, Sib. zh. industr. mat., 9:3 (2006), 39–40 | Zbl

[6] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, 1996 | MR | Zbl

[7] G. H. Golub, Y. C. F. Loan, Matrix Computations, John`s Hopkins Univ. Press, 1996 | MR | Zbl

[8] M. T. Chu, R. E. Funderlic, G. H. Golub, “A rank-one reduction formula and its application to matrix factorization”, SIAM Rev., 37 (1999), 512–530 | DOI | MR

[9] L. Hubert, J. Meulman, W. Heise, “Two purposes for matrix factorization: A historical appraial”, SIAM Rev., 42:1 (2000), 68–82 | DOI | MR | Zbl

[10] G. Appleby, D. S. Smolarski, “A linear acceleration row action method for projecting onto subspaces”, Eectr. Trans. Numer. Aanal. Kent State Univ., 20 (2005), 253–275 | MR | Zbl

[11] H. Scolnik, N. Echebest, M. T. Guardarrdarucci, M. C. Vacachino, “A class of optimized row projection methods for solving large nonsymmetric lunear systems”, Appl. Numer. Math., 41 (2002), 499–513 | DOI | MR | Zbl

[12] F. P. Gantmakher, Teoriya matrits, Nauka, M., 1968

[13] V. P. Ilin, “O problemakh resheniya bolshikh SLAU”, Zap. nauchn. semin. POMI, 439, 2015, 112–127

[14] V. P. Ilin, “Dvukhurovnevye metody naimenshikh kvadratov v podprostranstvakh Krylova”, Zap. nauchn. semin. POMI, 463, 2017, 224–239

[15] V. P. Il`in, “Methods of semiconjugate directions”, Russ. J. Numer. Anal. Math. Modelling, 23:4 (2008), 369–387 | MR

[16] R. A. Nicolaydes, “Deflation of conjugate gradients with application to boundary value problems”, SIAM J. Numer. Anal., 24 (1987), 335–365 | MR

[17] Y. Gurieva, V. P. Il`in, “On parallel computational technologies of augmented domain decomposition methods”, Parallel Computing Technologies, 13th International Conference PaCT (Petrozavodsk, Russia, 2015), 33–46

[18] J. H. Bramble, J. E. Pasciak, J. Wang, J. Xu, “Convergence estimates for product iterative methods with applications to domain decomposition”, Math. Comp., 57:195 (1991), 1–21 | DOI | MR | Zbl

[19] L. Yu. Kolotilina, “Pereobuslavlivanie sistem lineinykh algebraicheskikh uravnenii s pomoschyu dvoinogo ischerpyvaniya. I. Teoriya”, Zap. nauchn. semin. POMI, 229, 1995, 95–152

[20] J. Liesen, M. Rozloznik, Z. Strakokos, “Least squares resudials and minimal residual methods”, SIAM J. Sci. Comput., 23:5 (2002), 1503–1525 | DOI | MR | Zbl