On a finite algorithm for calculating neutral subspaces of skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 98-102
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be a nonsingular skew-symmetric matrix of an even order $n = 2m$. For such a matrix, we propose a finite algorithm, using only arithmetic operations and quadratic radicals, for calculating an $m$-dimensional neutral subspace. The necessity of calculating neutral subspaces originates in the problem of solving quadratic matrix equations.
@article{ZNSL_2018_472_a7,
author = {Kh. D. Ikramov},
title = {On a finite algorithm for calculating neutral subspaces of skew-symmetric matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--102},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a7/}
}
Kh. D. Ikramov. On a finite algorithm for calculating neutral subspaces of skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 98-102. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a7/
[1] Kh. D. Ikramov, “O razreshimosti odnogo klassa kvadratichnykh matrichnykh uravnenii”, Dokl. AN, 455 (2008), 135–137 | DOI
[2] C. F. Van Loan, “A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix”, Linear Algebra Appl., 16 (1984), 233–251 | DOI | MR
[3] Kh. D. Ikramov, Kh. Fassbender, “O proizvedenii dvukh kosogamiltonovykh ili dvukh kososimmetrichnykh matrits”, Zap. nauchn. semin. POMI, 359, 2008, 45–51