Pseudo-orthogonal eigenvalues of skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 92-97
Cet article a éte moissonné depuis la source Math-Net.Ru
The following result is attributed to J. Williamson: Every real, symmetric, and positive definite matrix $A$ of even order $n = 2m$ can be brought to diagonal form by congruence with a symplectic transformation matrix. The diagonal entries of this form are invariants of congruence transformations performed with $A$ and are called the symplectic eigenvalues of this matrix. In this short paper, we prove an analogous fact concerning (complex) skew-symmetric matrices and transformations belonging to a different group, namely, the group of pseudo-orthogonal matrices.
@article{ZNSL_2018_472_a6,
author = {Kh. D. Ikramov},
title = {Pseudo-orthogonal eigenvalues of skew-symmetric matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--97},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a6/}
}
Kh. D. Ikramov. Pseudo-orthogonal eigenvalues of skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 92-97. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a6/
[1] J. Williamson, “On the algebraic problem concerning the normal form of linear dynamical systems”, Amer. J. Math., 58 (1936), 141–163 | DOI | MR
[2] Kh. D. Ikramov, “O simplekticheskikh sobstvennykh znacheniyakh polozhitelno opredelennykh matrits”, Vestnik Mosk. un-ta. Ser. 15. Vychisl. mat. kibernetika, 2018, no. 1, 3–6
[3] A. I. Maltsev, Osnovy lineinoi algebry, Nauka, M., 1970
[4] Kh. D. Ikramov, “O singulyarnykh chislakh i polyarnom razlozhenii operatora v bilineino metricheskom prostranstve”, ZhVM i MF, 28 (1988), 127–129