A rational criterion for congruence of square matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 88-91
Cet article a éte moissonné depuis la source Math-Net.Ru
With a square complex matrix $A$ we associate the matrix pair consisting of its symmetric part $S(A) = (A + A^T)/2$ and its skew-symmetric part $K(A) = (A - A^T)/2$. We show that square matrices $A$ and $B$ are congruent if and only if the associated pairs $(S(A),K(A))$ and $(S(B),K(B))$ are (strictly) equivalent. This criterion can be verified by a finite rational calculation if the entries of $A$ and $B$ are rational or rational Gaussian numbers.
@article{ZNSL_2018_472_a5,
author = {Kh. D. Ikramov},
title = {A rational criterion for congruence of square matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--91},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/}
}
Kh. D. Ikramov. A rational criterion for congruence of square matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 88-91. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/
[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, 2013 | MR | Zbl
[2] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966
[3] Kh. D. Ikramov, “Vydelenie regulyarnoi chasti singulyarnogo matrichnogo puchka kak ratsionalnyi algoritm”, Zap. nauchn. semin. POMI, 439, 2015, 107–111