A rational criterion for congruence of square matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 88-91

Voir la notice de l'article provenant de la source Math-Net.Ru

With a square complex matrix $A$ we associate the matrix pair consisting of its symmetric part $S(A) = (A + A^T)/2$ and its skew-symmetric part $K(A) = (A - A^T)/2$. We show that square matrices $A$ and $B$ are congruent if and only if the associated pairs $(S(A),K(A))$ and $(S(B),K(B))$ are (strictly) equivalent. This criterion can be verified by a finite rational calculation if the entries of $A$ and $B$ are rational or rational Gaussian numbers.
@article{ZNSL_2018_472_a5,
     author = {Kh. D. Ikramov},
     title = {A rational criterion for congruence of square matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {472},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - A rational criterion for congruence of square matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 88
EP  - 91
VL  - 472
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/
LA  - ru
ID  - ZNSL_2018_472_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T A rational criterion for congruence of square matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 88-91
%V 472
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/
%G ru
%F ZNSL_2018_472_a5
Kh. D. Ikramov. A rational criterion for congruence of square matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 88-91. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a5/