The length of group algebras of small-order groups
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 76-87

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper evaluates the lengths of group algebras of all groups of orders at most 7 over an arbitrary field.
@article{ZNSL_2018_472_a4,
     author = {A. E. Guterman and O. V. Markova},
     title = {The length of group algebras of small-order groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--87},
     publisher = {mathdoc},
     volume = {472},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - O. V. Markova
TI  - The length of group algebras of small-order groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 76
EP  - 87
VL  - 472
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/
LA  - ru
ID  - ZNSL_2018_472_a4
ER  - 
%0 Journal Article
%A A. E. Guterman
%A O. V. Markova
%T The length of group algebras of small-order groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 76-87
%V 472
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/
%G ru
%F ZNSL_2018_472_a4
A. E. Guterman; O. V. Markova. The length of group algebras of small-order groups. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 76-87. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/