@article{ZNSL_2018_472_a4,
author = {A. E. Guterman and O. V. Markova},
title = {The length of group algebras of small-order groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--87},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/}
}
A. E. Guterman; O. V. Markova. The length of group algebras of small-order groups. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 76-87. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/
[1] L. Babai, Á. Seress, “On the diameter of permutation groups”, Eur. J. Combin., 13:4 (1992), 231–243 | DOI | MR | Zbl
[2] E. B. Vinberg, Kurs algebry, 3-e izd., Faktorial Press, M., 2002
[3] M. M. Glukhov, A. Yu. Zubov, “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Mat. vopr. kibernetiki, 8, 1999, 5–32
[4] A. E. Guterman, O. V. Markova, M. A. Khrystik, On the lengths of group algebras of finite Abelian groups in the semi-simple case, Preprint, 2018 | MR
[5] A. E. Guterman, O. V. Markova, M. A. Khrystik, On the lengths of group algebras of finite Abelian groups in the modular case, Preprint, 2018 | MR
[6] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sbornik, 200:12 (2009), 41–62 | DOI | Zbl
[7] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fundam. prikl. matem., 17:6 (2012), 65–173
[8] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[9] D. S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977 | MR | Zbl
[10] R. Pirs, Assotsiativnye algebry, Mir, M., 1986
[11] R. K. Sharma, J. B. Srivastava, M. Khan, “The unit group of $\mathbf{F}S_3$”, Acta Math. Acad. Paedagog. Nyházi, 23:2 (2007), 129–142 | MR | Zbl