The length of group algebras of small-order groups
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 76-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper evaluates the lengths of group algebras of all groups of orders at most 7 over an arbitrary field.
@article{ZNSL_2018_472_a4,
     author = {A. E. Guterman and O. V. Markova},
     title = {The length of group algebras of small-order groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--87},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - O. V. Markova
TI  - The length of group algebras of small-order groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 76
EP  - 87
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/
LA  - ru
ID  - ZNSL_2018_472_a4
ER  - 
%0 Journal Article
%A A. E. Guterman
%A O. V. Markova
%T The length of group algebras of small-order groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 76-87
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/
%G ru
%F ZNSL_2018_472_a4
A. E. Guterman; O. V. Markova. The length of group algebras of small-order groups. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 76-87. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a4/

[1] L. Babai, Á. Seress, “On the diameter of permutation groups”, Eur. J. Combin., 13:4 (1992), 231–243 | DOI | MR | Zbl

[2] E. B. Vinberg, Kurs algebry, 3-e izd., Faktorial Press, M., 2002

[3] M. M. Glukhov, A. Yu. Zubov, “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Mat. vopr. kibernetiki, 8, 1999, 5–32

[4] A. E. Guterman, O. V. Markova, M. A. Khrystik, On the lengths of group algebras of finite Abelian groups in the semi-simple case, Preprint, 2018 | MR

[5] A. E. Guterman, O. V. Markova, M. A. Khrystik, On the lengths of group algebras of finite Abelian groups in the modular case, Preprint, 2018 | MR

[6] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Mat. sbornik, 200:12 (2009), 41–62 | DOI | Zbl

[7] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fundam. prikl. matem., 17:6 (2012), 65–173

[8] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[9] D. S. Passman, The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977 | MR | Zbl

[10] R. Pirs, Assotsiativnye algebry, Mir, M., 1986

[11] R. K. Sharma, J. B. Srivastava, M. Khan, “The unit group of $\mathbf{F}S_3$”, Acta Math. Acad. Paedagog. Nyházi, 23:2 (2007), 129–142 | MR | Zbl