Relation graphs of real Cayley–Dickson algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 44-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents anticommutativity conditions for elements of arbitrary real Cayley–Dickson algebras, based on which the anticommutativity graphs on equivalence classes of such algebras are classified. Under some additional conditions on the algebras considered, an expression for the centralizer of an element in terms of its orthogonalizer is obtained. Conditions sufficient for this interrelation to hold are provided. Also examples of real Cayley–Dickson algebras in which the centralizer and orthogonalizer of an element are not interrelated in this way are considered.
@article{ZNSL_2018_472_a3,
     author = {A. E. Guterman and S. A. Zhilina},
     title = {Relation graphs of real {Cayley{\textendash}Dickson} algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--75},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - S. A. Zhilina
TI  - Relation graphs of real Cayley–Dickson algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 44
EP  - 75
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/
LA  - ru
ID  - ZNSL_2018_472_a3
ER  - 
%0 Journal Article
%A A. E. Guterman
%A S. A. Zhilina
%T Relation graphs of real Cayley–Dickson algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 44-75
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/
%G ru
%F ZNSL_2018_472_a3
A. E. Guterman; S. A. Zhilina. Relation graphs of real Cayley–Dickson algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 44-75. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/

[1] J. Adem, “Construction of some normed maps”, Bol. Soc. Mat. Mexicana (2), 20:2 (1975), 59–75 | MR | Zbl

[2] S. Akbari, H. Bidkhori, A. Mohammadian, “Commuting graphs of matrix algebras”, Commun. Algebra, 36:11 (2008), 4020–4031 | DOI | MR | Zbl

[3] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390 (2004), 345–355 | DOI | MR | Zbl

[4] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418:1 (2006), 161–176 | DOI | MR | Zbl

[5] A. A. Albert, “Qyadratic forms permitting composition”, Ann. Math., 43 (1942), 161–177 | DOI | MR

[6] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl

[7] L. Babai, Á. Seress, “On the diameter of permutation groups”, Eur. J. Combin., 13:4 (1992), 231–243 | DOI | MR | Zbl

[8] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl

[9] B. R. Bakhadly, “Orthogonality graph of the algebra of upper triangular matrices”, Oper. Matrices, 11:2 (2017), 455–463 | DOI | MR | Zbl

[10] B. R. Bakhadly, A. E. Guterman, O. V. Markova, “Grafy, opredelennye ortogonalnostyu”, Zap. nauchn. semin. POMI, 428, 2014, 49–80

[11] I. Beck, “Coloring of commuatitive rings”, J. Algebra, 116:1 (1988), 208–226 | DOI | MR | Zbl

[12] I. Bozic, Z. Petrovic, “Zero-divisor graphs of matrices over commutative rings”, Commun. Algebra, 37:4 (2009), 1186–1192 | DOI | MR | Zbl

[13] K. Carmody, “Circular and hyperbolic quaternions, octonions, and sedenions”, Appl. Math. Comput., 28 (1988), 47–72 | MR | Zbl

[14] K. Carmody, “Circular and hyperbolic quaternions, octonions, and sedenions-further results”, Appl. Math. Comput., 84 (1997), 27–48 | MR

[15] R. E. Cawagas, “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Disc. Math., 24 (2004), 251–265 | MR | Zbl

[16] G. Dolinar, A. E. Guterman, B. Kuzma, P. Oblak, “Commuting graphs and extremal centralizers”, Ars Math. Contemp., 7:2 (2014), 453–459 | DOI | MR | Zbl

[17] W. Greub, Linear Algebra, Springer, New York, 1975 | MR | Zbl

[18] A. E. Guterman, O. V. Markova, “Grafy ortogonalnosti matrits nad telami”, Zap. nauchn. semin. POMI, 463, 2017, 81–93

[19] K. Imaeda, M. Imaeda, “Sedenions: Algebra and analysis”, Appl. Math. Comput., 115:2–3 (2000), 77–88 | MR | Zbl

[20] R. P. C. de Marrais, The $42$ assessors and the box-kites they fly: diagonal axis-pair systems of zero-divisors in the sedenions'$16$ dimensions, 2000, arXiv: math/0011260 [math.GM]

[21] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl

[22] G. Moreno, “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera serie), 4:1 (1998), 13–28 | MR | Zbl

[23] G. Moreno, “Alternative elements in the Cayley-Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebanski, 2006, 333–346 | DOI | MR | Zbl

[24] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517 [math.RA]

[25] S. B. Mulay, “Cycles and symmetries of zero-divisors”, Commun. Algebra, 30 (2002), 3533–3558 | DOI | MR | Zbl

[26] S. P. Redmond, “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211 | MR

[27] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl

[28] G. Dolinar, B. Kuzma, N. Stopar, The orthogonality relation classifies formally real simple Jordan algebras, Preprint