@article{ZNSL_2018_472_a3,
author = {A. E. Guterman and S. A. Zhilina},
title = {Relation graphs of real {Cayley{\textendash}Dickson} algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--75},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/}
}
A. E. Guterman; S. A. Zhilina. Relation graphs of real Cayley–Dickson algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 44-75. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a3/
[1] J. Adem, “Construction of some normed maps”, Bol. Soc. Mat. Mexicana (2), 20:2 (1975), 59–75 | MR | Zbl
[2] S. Akbari, H. Bidkhori, A. Mohammadian, “Commuting graphs of matrix algebras”, Commun. Algebra, 36:11 (2008), 4020–4031 | DOI | MR | Zbl
[3] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, “On commuting graphs of semisimple rings”, Linear Algebra Appl., 390 (2004), 345–355 | DOI | MR | Zbl
[4] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418:1 (2006), 161–176 | DOI | MR | Zbl
[5] A. A. Albert, “Qyadratic forms permitting composition”, Ann. Math., 43 (1942), 161–177 | DOI | MR
[6] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl
[7] L. Babai, Á. Seress, “On the diameter of permutation groups”, Eur. J. Combin., 13:4 (1992), 231–243 | DOI | MR | Zbl
[8] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl
[9] B. R. Bakhadly, “Orthogonality graph of the algebra of upper triangular matrices”, Oper. Matrices, 11:2 (2017), 455–463 | DOI | MR | Zbl
[10] B. R. Bakhadly, A. E. Guterman, O. V. Markova, “Grafy, opredelennye ortogonalnostyu”, Zap. nauchn. semin. POMI, 428, 2014, 49–80
[11] I. Beck, “Coloring of commuatitive rings”, J. Algebra, 116:1 (1988), 208–226 | DOI | MR | Zbl
[12] I. Bozic, Z. Petrovic, “Zero-divisor graphs of matrices over commutative rings”, Commun. Algebra, 37:4 (2009), 1186–1192 | DOI | MR | Zbl
[13] K. Carmody, “Circular and hyperbolic quaternions, octonions, and sedenions”, Appl. Math. Comput., 28 (1988), 47–72 | MR | Zbl
[14] K. Carmody, “Circular and hyperbolic quaternions, octonions, and sedenions-further results”, Appl. Math. Comput., 84 (1997), 27–48 | MR
[15] R. E. Cawagas, “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Disc. Math., 24 (2004), 251–265 | MR | Zbl
[16] G. Dolinar, A. E. Guterman, B. Kuzma, P. Oblak, “Commuting graphs and extremal centralizers”, Ars Math. Contemp., 7:2 (2014), 453–459 | DOI | MR | Zbl
[17] W. Greub, Linear Algebra, Springer, New York, 1975 | MR | Zbl
[18] A. E. Guterman, O. V. Markova, “Grafy ortogonalnosti matrits nad telami”, Zap. nauchn. semin. POMI, 463, 2017, 81–93
[19] K. Imaeda, M. Imaeda, “Sedenions: Algebra and analysis”, Appl. Math. Comput., 115:2–3 (2000), 77–88 | MR | Zbl
[20] R. P. C. de Marrais, The $42$ assessors and the box-kites they fly: diagonal axis-pair systems of zero-divisors in the sedenions'$16$ dimensions, 2000, arXiv: math/0011260 [math.GM]
[21] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl
[22] G. Moreno, “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera serie), 4:1 (1998), 13–28 | MR | Zbl
[23] G. Moreno, “Alternative elements in the Cayley-Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebanski, 2006, 333–346 | DOI | MR | Zbl
[24] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517 [math.RA]
[25] S. B. Mulay, “Cycles and symmetries of zero-divisors”, Commun. Algebra, 30 (2002), 3533–3558 | DOI | MR | Zbl
[26] S. P. Redmond, “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211 | MR
[27] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl
[28] G. Dolinar, B. Kuzma, N. Stopar, The orthogonality relation classifies formally real simple Jordan algebras, Preprint