Permanent preserving linear transformations of skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q_n(\mathbb{C})$ denote the space of all skew-symmetric $n\times n$ matrices over the complex field $\mathbb{C}$. The paper characterizes the linear mappings $T$: $Q_n(\mathbb{C})\to Q_n(\mathbb{C})$ that satisfy the condition $\operatorname{per}( T (A))=\operatorname{per}(A)$ for all $A \in Q_n(\mathbb{C})$ and an arbitrary $n>4$.
@article{ZNSL_2018_472_a2,
     author = {M. V. Budrevich and A. E. Guterman and M. A. Duffner},
     title = {Permanent preserving linear transformations of skew-symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {472},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/}
}
TY  - JOUR
AU  - M. V. Budrevich
AU  - A. E. Guterman
AU  - M. A. Duffner
TI  - Permanent preserving linear transformations of skew-symmetric matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 31
EP  - 43
VL  - 472
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/
LA  - ru
ID  - ZNSL_2018_472_a2
ER  - 
%0 Journal Article
%A M. V. Budrevich
%A A. E. Guterman
%A M. A. Duffner
%T Permanent preserving linear transformations of skew-symmetric matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 31-43
%V 472
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/
%G ru
%F ZNSL_2018_472_a2
M. V. Budrevich; A. E. Guterman; M. A. Duffner. Permanent preserving linear transformations of skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/