Permanent preserving linear transformations of skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Q_n(\mathbb{C})$ denote the space of all skew-symmetric $n\times n$ matrices over the complex field $\mathbb{C}$. The paper characterizes the linear mappings $T$: $Q_n(\mathbb{C})\to Q_n(\mathbb{C})$ that satisfy the condition $\operatorname{per}( T (A))=\operatorname{per}(A)$ for all $A \in Q_n(\mathbb{C})$ and an arbitrary $n>4$.
@article{ZNSL_2018_472_a2,
author = {M. V. Budrevich and A. E. Guterman and M. A. Duffner},
title = {Permanent preserving linear transformations of skew-symmetric matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--43},
publisher = {mathdoc},
volume = {472},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/}
}
TY - JOUR AU - M. V. Budrevich AU - A. E. Guterman AU - M. A. Duffner TI - Permanent preserving linear transformations of skew-symmetric matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 31 EP - 43 VL - 472 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/ LA - ru ID - ZNSL_2018_472_a2 ER -
M. V. Budrevich; A. E. Guterman; M. A. Duffner. Permanent preserving linear transformations of skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/