Permanent preserving linear transformations of skew-symmetric matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $Q_n(\mathbb{C})$ denote the space of all skew-symmetric $n\times n$ matrices over the complex field $\mathbb{C}$. The paper characterizes the linear mappings $T$: $Q_n(\mathbb{C})\to Q_n(\mathbb{C})$ that satisfy the condition $\operatorname{per}( T (A))=\operatorname{per}(A)$ for all $A \in Q_n(\mathbb{C})$ and an arbitrary $n>4$.
@article{ZNSL_2018_472_a2,
     author = {M. V. Budrevich and A. E. Guterman and M. A. Duffner},
     title = {Permanent preserving linear transformations of skew-symmetric matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--43},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/}
}
TY  - JOUR
AU  - M. V. Budrevich
AU  - A. E. Guterman
AU  - M. A. Duffner
TI  - Permanent preserving linear transformations of skew-symmetric matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 31
EP  - 43
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/
LA  - ru
ID  - ZNSL_2018_472_a2
ER  - 
%0 Journal Article
%A M. V. Budrevich
%A A. E. Guterman
%A M. A. Duffner
%T Permanent preserving linear transformations of skew-symmetric matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 31-43
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/
%G ru
%F ZNSL_2018_472_a2
M. V. Budrevich; A. E. Guterman; M. A. Duffner. Permanent preserving linear transformations of skew-symmetric matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 31-43. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a2/

[1] P. Botta, “On the conversion of the determinant into the permanent”, Canad. Math. Bull., 11 (1968), 31–34 | DOI | MR | Zbl

[2] C. Cao, X. Tang, “Determinant preserving transformations on symmetric matrix spaces”, Electr. J. Linear Algebra, 11 (2004), 205–211 | MR | Zbl

[3] C. Cao, X. Tang, “Linear maps preserving rank 2 on the space of alternate matrices and their applications”, Int. J. Math. Sci., 61–64 (2004), 3409–3417 | DOI | MR | Zbl

[4] M. P. Coelho, “Linear preservers of the permanent on symmetric matrices”, Linear Multilinear Algebra, 41 (1996), 1–8 | DOI | MR | Zbl

[5] M. P. Coelho, M. A. Duffner, “Linear preservers of immanants on skew-symmetric matrices”, Linear Algebra Appl., 436 (2012), 2536–2553 | DOI | MR | Zbl

[6] M. P. Coelho, M. A. Duffner, “Linear preservers of immanants on symmetric matrices”, Linear Algebra Appl., 255 (1997), 314–334 | MR

[7] M. P. Coelho, M. A. Duffner, “On the relation between the determinant and the permanent on symmetric matrices”, Linear Multilinear Algebra, 51:2 (2003), 127–136 | DOI | MR

[8] M. P. Coelho, M. A. Duffner, “On the conversion of an immanant into another on symmetric matrices”, Linear Multilinear Algebra, 51:2 (2003), 137–145 | DOI | MR

[9] J. Dieudonné, “Sur une généralisation du groupe orthogonal à quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl

[10] G. Frobenius, “$\ddot{\rm U}$ber die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Preuss. Akad. Wiss. Berlin, 1897, 994–1015 | Zbl

[11] C.-K. Li, N.-K. Tsing, “Linear preserver problems: a brief introduction and some special techniques. Directions in matrix theory”, Linear Algebra Appl., 162/164 (1992), 217–235 | MR | Zbl

[12] M. H. Lim, “Linear transformations on symmetric matrices”, Linear Multilinear Algebra, 7 (1979), 47–57 | DOI | MR

[13] M. H. Lim, Hock Ong, “Linear transformations on symmetric matrices that preserve the permanent”, Linear Algebra App., 21:2 (1978), 143–151 | DOI | MR | Zbl

[14] M. Marcus, F. May, “On a theorem of I. Schur conserning matrix transformations”, Arch. Math., 11 (1960), 27–30 | MR

[15] M. Marcus, F. May, “The permanent function”, Can. J. Math., 14 (1962), 177–189 | DOI | MR | Zbl

[16] S. Pierce and others, “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | MR | Zbl

[17] I. Schur, “Einige Bemerkungen zur Determinantentheorie”, Akad. Wiss. Berlin, S.-Ber. Preuß, 1925, 454–463 | Zbl

[18] V. Tan, F. Wang, “On determinant preserver problems”, Linear Algebra Appl., 369 (2003), 311–317 | DOI | MR | Zbl