@article{ZNSL_2018_472_a12,
author = {E. K. Kulikov and A. A. Makarov},
title = {Approximation by hyperbolic splines},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {179--194},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/}
}
E. K. Kulikov; A. A. Makarov. Approximation by hyperbolic splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 179-194. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/
[1] D. G. Schweikert, “An interpolating curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | DOI | MR | Zbl
[2] H. Späth, “Exponential spline interpolation”, Computing, 4 (1969), 225–233 | DOI | MR | Zbl
[3] J. W. Jerome, L. L. Schumaker, “Local support bases for a class of spline functions”, J. Approx. Theory, 16 (1976), 16–27 | DOI | MR | Zbl
[4] C. de Boor, A Practical Guide to Splines, Revised edn., Springer, New York, 2001 | MR | Zbl
[5] L. L. Schumaker, Spline Functions: Basic Theory, 3rd edn., Cambridge University Press, Cambridge, 2007 | MR | Zbl
[6] B. I. Kvasov, P. Sattayatham, “$GB$-splines of arbitrary order”, J. Comput. Appl. Math., 104 (1999), 63–88 | DOI | MR | Zbl
[7] P. Costantini, T. Lyche, C. Manni, “On a class of weak Tchebycheff systems”, Numer. Math., 101 (2005), 333–354 | DOI | MR | Zbl
[8] Yu. K. Demyanovich, “Vlozhennye prostranstva trigonometricheskikh splainov i ikh vspleskovoe razlozhenie”, Mat. zametki, 78:5 (2005), 658–675 | DOI
[9] Yu. K. Demyanovich, “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Dokl. RAN, 401:4 (2005), 1–4
[10] Yu. K. Demyanovich, “Minimalnye splainy lagranzheva tipa”, Probl. mat. analiza, 50 (2010), 21–64 | Zbl
[11] A. A. Makarov, “Normalizovannye trigonometricheskie splainy lagranzheva tipa”, Vestn. S.-Peterb. un-ta, 1:3 (2008), 81–87
[12] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. mat. analiza, 60 (2011), 25–38 | Zbl
[13] J. M. Pena, “Shape preserving representations for trigonometric polynomial curves”, Computer Aided Geometric Design, 14:1 (1997), 5–11 | DOI | MR | Zbl
[14] G. Xu, G. Z. Wang, “AHT Bezier curves and NUAHT B-spline curves”, J. Comp. Sci. Technol., 22:4 (2007), 597–607 | DOI | MR
[15] J. A. Cottrell, Th. J. R. Hughes, Yu. Bazilevs, Isogeometric Analysis: Towards Integration of CAD and FEA, John Wiley Sons, 2009 | MR
[16] B. I. Kvasov, Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006
[17] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Comp. Sci., 10187, 2017, 448–455 | DOI | MR | Zbl
[18] Yu. K. Demyanovich, A. A. Makarov, “Neobkhodimye i dostatochnye usloviya neotritsatelnosti koordinatnykh trigonometricheskikh splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta. Ser. 1, 4 (62):1 (2017), 9–16
[19] A. A. Makarov, “O dvoistvennykh funktsionalakh k minimalnym splainam”, Zap. nauchn. semin. POMI, 453, 2016, 198–218
[20] A. A. Makarov, “Biortogonalnye sistemy funktsionalov i matritsy dekompozitsii dlya minimalnykh splainov”, Ukr. mat. visn., 9:2 (2012), 219–236 | Zbl
[21] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980