Approximation by hyperbolic splines
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 179-194

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the minimal hyperbolic splines and their properties. Formulas for constructing quadratic splines and the corresponding biorthogonal (dual) functionals are obtained. Numerical results, demonstrating how approximation quality can be improved by using hyperbolic splines and changing control parameters, are presented.
@article{ZNSL_2018_472_a12,
     author = {E. K. Kulikov and A. A. Makarov},
     title = {Approximation by hyperbolic splines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--194},
     publisher = {mathdoc},
     volume = {472},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/}
}
TY  - JOUR
AU  - E. K. Kulikov
AU  - A. A. Makarov
TI  - Approximation by hyperbolic splines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 179
EP  - 194
VL  - 472
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/
LA  - ru
ID  - ZNSL_2018_472_a12
ER  - 
%0 Journal Article
%A E. K. Kulikov
%A A. A. Makarov
%T Approximation by hyperbolic splines
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 179-194
%V 472
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/
%G ru
%F ZNSL_2018_472_a12
E. K. Kulikov; A. A. Makarov. Approximation by hyperbolic splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 179-194. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a12/