A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 166-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents new nonsingularity conditions for $n\times n$ matrices, which involve a subset $S$ of the index set $\{1, \dots,n\}$ and take into consideration the matrix sparsity pattern. It is shown that the matrices satisfying these conditions form a subclass of the class of nonsingular $\mathcal H$-matrices, which contains some known matrix classes such as the class of doubly strictly diagonally dominant (DSDD) matrices and the class of Dashnic–Zusmanovich type (DZT) matrices. The nonsingularity conditions established are used to obtain the corresponding eigenvalue inclusion sets, which, in their turn, are used in deriving new inclusion sets for the singular values of a square matrix, improving some recently suggested ones.
@article{ZNSL_2018_472_a11,
     author = {L. Yu. Kolotilina},
     title = {A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--178},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 166
EP  - 178
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/
LA  - ru
ID  - ZNSL_2018_472_a11
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 166-178
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/
%G ru
%F ZNSL_2018_472_a11
L. Yu. Kolotilina. A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 166-178. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/

[1] L. Yu. Kolotilina, “Mnozhestva, soderzhaschie singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, 2008, 52–77

[2] L. Yu. Kolotilina, “O matritsakh Dashnitsa– Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165

[3] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[4] A. Brauer, “Limits for the characteristic roots of a matrix: II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl

[5] L. Cvetković, “$H$-matrix theory vs. eigenvalue localization”, Numer. Algorithms, 42 (2007), 229–245 | DOI | MR

[6] Jun He, Yan-Min Liu, Yun-Kang Tian, Ze-Rong Ren, “A note on the inclusion set for singular values”, AIMS Mathematics, 2:2 (2017), 315–321 | DOI | MR

[7] Jun He, Yan-Min Liu, Yun-Kang Tian, Ze-Rong Ren, “New inclusion sets for singular values”, J. Ineq. Appl., 64 (2017) | DOI | MR

[8] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl

[9] A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, 10 (1937), 69–96 | MR

[10] L. Qi, “Some simple estimates for singular values of a matrix”, Linear Algebra Appl., 56 (1984), 105–119 | DOI | MR | Zbl

[11] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl