@article{ZNSL_2018_472_a11,
author = {L. Yu. Kolotilina},
title = {A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--178},
year = {2018},
volume = {472},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 166 EP - 178 VL - 472 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/ LA - ru ID - ZNSL_2018_472_a11 ER -
%0 Journal Article %A L. Yu. Kolotilina %T A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 166-178 %V 472 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/ %G ru %F ZNSL_2018_472_a11
L. Yu. Kolotilina. A new subclass of the class of nonsingular $\mathcal H$-matrices and related inclusion sets for eigenvalues and singular values. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 166-178. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a11/
[1] L. Yu. Kolotilina, “Mnozhestva, soderzhaschie singulyarnyi spektr kvadratnoi matritsy”, Zap. nauchn. semin. POMI, 359, 2008, 52–77
[2] L. Yu. Kolotilina, “O matritsakh Dashnitsa– Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165
[3] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl
[4] A. Brauer, “Limits for the characteristic roots of a matrix: II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl
[5] L. Cvetković, “$H$-matrix theory vs. eigenvalue localization”, Numer. Algorithms, 42 (2007), 229–245 | DOI | MR
[6] Jun He, Yan-Min Liu, Yun-Kang Tian, Ze-Rong Ren, “A note on the inclusion set for singular values”, AIMS Mathematics, 2:2 (2017), 315–321 | DOI | MR
[7] Jun He, Yan-Min Liu, Yun-Kang Tian, Ze-Rong Ren, “New inclusion sets for singular values”, J. Ineq. Appl., 64 (2017) | DOI | MR
[8] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl
[9] A. M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, 10 (1937), 69–96 | MR
[10] L. Qi, “Some simple estimates for singular values of a matrix”, Linear Algebra Appl., 56 (1984), 105–119 | DOI | MR | Zbl
[11] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl