On Dashnic–Zusmanovich (DZ) and Dashnic–Zusmanovich type (DZT) matrices and their inverses
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 145-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is mainly devoted to studying the so-called Dashnic–Zusmanovich type (DZT) matrices, introduced recently. Interrelations among the DZT matrices and related subclasses of the class of nonsingular $\mathcal{H}$-matrices, namely, the Dashnic–Zusmanovich (DZ) and $S$-SDD matrices are considered. Upper bounds for the $l_\infty$-norm of the inverses to DZT, DZ, and strictly diagonally dominant (SDD) matrices are obtained.
@article{ZNSL_2018_472_a10,
     author = {L. Yu. Kolotilina},
     title = {On {Dashnic{\textendash}Zusmanovich} {(DZ)} and {Dashnic{\textendash}Zusmanovich} type {(DZT)} matrices and their inverses},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--165},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a10/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On Dashnic–Zusmanovich (DZ) and Dashnic–Zusmanovich type (DZT) matrices and their inverses
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 145
EP  - 165
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a10/
LA  - ru
ID  - ZNSL_2018_472_a10
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On Dashnic–Zusmanovich (DZ) and Dashnic–Zusmanovich type (DZT) matrices and their inverses
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 145-165
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a10/
%G ru
%F ZNSL_2018_472_a10
L. Yu. Kolotilina. On Dashnic–Zusmanovich (DZ) and Dashnic–Zusmanovich type (DZT) matrices and their inverses. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 145-165. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a10/

[1] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | DOI | Zbl

[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102

[3] L. Yu. Kolotilina, “Otsenki beskonechnoi normy obratnykh k matritsam Nekrasova”, Zap. nauchn. semin. POMI, 419, 2013, 111–120

[4] L. Yu. Kolotilina, “Otsenki obratnykh dlya obobschennykh matrits Nekrasova”, Zap. nauchn. semin. POMI, 428, 2014, 182–195

[5] L. Yu. Kolotilina, “Otsenki obratnykh v norme $l_\infty$ dlya nekotorykh blochnykh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 145–158

[6] L. Yu. Kolotilina, “Novye podklassy klassa ${\mathcal H}$-matrits i sootvetstvuyuschie otsenki obratnykh matrits”, Zap. nauchn. semin. POMI, 453, 2016, 148–171

[7] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[8] L. Cvetković, “$H$-matrix theory vs. eigenvalue localization”, Numer. Algorithms, 42 (2007), 229–245 | DOI | MR

[9] L. Cvetković, P.-F. Dai, K. Doroslovac̆ki, Y.-T. Li, “Infinity norm bounds for the inverse of Nekrasov matrices”, Appl. Math. Comput., 219 (2013), 5020–5024 | MR | Zbl

[10] L. Cvetković, K. Doroslovac̆ki, “Max norm estimation for the inverse of block matrices”, Appl. Math. Comput., 242 (2014), 694–706 | MR | Zbl

[11] L. Cvetković, V. Kostić, K. Doroslovac̆ki, “Max-norm bounds for the inverse of $S$-Nekrasov matrices”, Appl. Math. Comput., 218 (2012), 9498–9503 | MR | Zbl

[12] L. Cvetković, V. Kostić, S. Raus̆ki, “A new subclass of $H$-matrices”, Appl. Math. Comput., 208 (2009), 206–210 | MR | Zbl

[13] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl

[14] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of $SDD$ and ${\mathcal S}-SDD$ matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl

[15] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[16] R. S. Varga, Geršgorin and His Circles, Springer Series Comput. Math., 36, Springer, 2004 | DOI | MR | Zbl

[17] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl