Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 17-30
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the index of imprimitivity of a semigroup of nonnegative block-monominal matrices free of zero rows decomposes into a sum of the indices of imprimitivity of its temporal components, and if the semigroup is block irreducible, then the indices of imprimitivity of all the temporal components are equal.
@article{ZNSL_2018_472_a1,
author = {Yu. A. Al'pin and V. S. Al'pina},
title = {Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--30},
publisher = {mathdoc},
volume = {472},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/}
}
TY - JOUR AU - Yu. A. Al'pin AU - V. S. Al'pina TI - Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 17 EP - 30 VL - 472 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/ LA - ru ID - ZNSL_2018_472_a1 ER -
Yu. A. Al'pin; V. S. Al'pina. Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 17-30. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/