Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 17-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the index of imprimitivity of a semigroup of nonnegative block-monominal matrices free of zero rows decomposes into a sum of the indices of imprimitivity of its temporal components, and if the semigroup is block irreducible, then the indices of imprimitivity of all the temporal components are equal.
@article{ZNSL_2018_472_a1,
     author = {Yu. A. Al'pin and V. S. Al'pina},
     title = {Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--30},
     year = {2018},
     volume = {472},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - V. S. Al'pina
TI  - Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 17
EP  - 30
VL  - 472
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/
LA  - ru
ID  - ZNSL_2018_472_a1
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A V. S. Al'pina
%T Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 17-30
%V 472
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/
%G ru
%F ZNSL_2018_472_a1
Yu. A. Al'pin; V. S. Al'pina. Indices of imprimitivity of the temporal components of a semigroup of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXI, Tome 472 (2018), pp. 17-30. http://geodesic.mathdoc.fr/item/ZNSL_2018_472_a1/

[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967

[2] V. Yu. Protasov, A. S. Voynov, “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437 (2012), 749–765 | DOI | MR | Zbl

[3] Yu. A. Alpin, V. S. Alpina, “Temporalnye komponenty polugruppy neotritsatelnykh matrits. Obobschenie teoremy Minka o strukture neprivodimoi matritsy”, Zap. nauchn. semin. POMI, 463, 2017, 5–12

[4] Yu. A. Alpin, V. S. Alpina, “Kombinatornye svoistva tselykh polugrupp neotritsatelnykh matrits”, Zap. nauchn. semin. POMI, 428, 2014, 13–31

[5] Yu. A. Alpin, V. S. Alpina, “Lokalno strogo primitivnye polugruppy neotritsatelnykh matrits”, Zap. nauchn. semin. POMI, 453, 2016, 5–14

[6] Yu. A. Alpin, V. S. Alpina,, “Kombinatornye svoistva neprivodimykh polugrupp neotritsatelnykh matrits”, Zap. nauchn. semin. POMI, 405, 2012, 13–23

[7] Yu. A. Alpin, V. S. Alpina,, “Kombinatornye i spektralnye svoistva polugrupp stokhasticheskikh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 13–25

[8] H. Minc, “The structure of irreducible matrices”, Linear Multilinear Algebra, 2 (1974), 85–90 | DOI | MR | Zbl

[9] H. Mink, Nonnegative Matrices, Wiley, New York etc., 1988 | MR