``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 124-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Parabolic equation describes propagation of the localized waves along the boundary with peculiarities. We present here some reformulation of the “separation of variables”, which gives the possibility to obtain rich set of solutions of the corresponding boundary problems.
@article{ZNSL_2018_471_a8,
author = {A. Ya. Kazakov},
title = {``Separation of variables'' in the model problems of the diffraction theory. {Formal} scheme},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--139},
publisher = {mathdoc},
volume = {471},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/}
}
TY - JOUR AU - A. Ya. Kazakov TI - ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 124 EP - 139 VL - 471 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/ LA - ru ID - ZNSL_2018_471_a8 ER -
A. Ya. Kazakov. ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/