``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 124-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Parabolic equation describes propagation of the localized waves along the boundary with peculiarities. We present here some reformulation of the “separation of variables”, which gives the possibility to obtain rich set of solutions of the corresponding boundary problems.
@article{ZNSL_2018_471_a8,
     author = {A. Ya. Kazakov},
     title = {``Separation of variables'' in the model problems of the diffraction theory. {Formal} scheme},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--139},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/}
}
TY  - JOUR
AU  - A. Ya. Kazakov
TI  - ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 124
EP  - 139
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/
LA  - ru
ID  - ZNSL_2018_471_a8
ER  - 
%0 Journal Article
%A A. Ya. Kazakov
%T ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 124-139
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/
%G ru
%F ZNSL_2018_471_a8
A. Ya. Kazakov. ``Separation of variables'' in the model problems of the diffraction theory. Formal scheme. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a8/