@article{ZNSL_2018_471_a6,
author = {M. N. Demchenko},
title = {On the {Cauchy} problem for the wave equation with data on the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {99--112},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a6/}
}
M. N. Demchenko. On the Cauchy problem for the wave equation with data on the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 99-112. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a6/
[1] V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, 2nd Ed., Springer, 2006 | MR | Zbl
[2] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Moskva, 1980 | MR
[3] D. Tataru, “Unique Continuation for Solutions to PDE's; Between Hörmander's Theorem and Holmgren's Theorem”, Commun. Partial Diff. Equations, 20:5–6 (1995), 855–884 | MR | Zbl
[4] S. I. Kabanikhin, D. B. Nurseitov, M. A. Shishlenin, B. B. Sholpanbaev, “Inverse problems for the ground penetrating radar”, J. Inverse Ill-Posed Probl., 21 (2013), 885–892 | MR | Zbl
[5] F. Natterer, “Photo-acoustic inversion in convex domains”, Inverse Probl. Imaging, 6:2 (2012), 315–320 | DOI | MR | Zbl
[6] R. A. Kruger, P. Liu, Y. Fang, C. R. Appledorn, “Photoacoustic ultrasound (PAUS) – Reconstruction tomography”, Medical Physics, 22 (1995), 1605–1609 | DOI
[7] T. A. Voronina, V. A. Tcheverda, V. V. Voronin, “Some properties of the inverse operator for a tsunami source recovery”, Siberian Electronic Mathematical Reports, 11 (2014), 532–547 | MR | Zbl
[8] M. I. Belishev, “Recent progress in the boundary control method”, Inverse problems, 23:5 (2007), 1–67 | DOI | MR
[9] M. N. Demchenko, “Dinamicheskaya trekhmernaya obratnaya zadacha dlya sistemy Maksvella”, Algebra i analiz, 23:6 (2011), 32–79 | MR
[10] M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geometry and Physics, 78 (2014), 29–47 | DOI | MR | Zbl
[11] A. S. Blagoveshchensky, F. N. Podymaka, “On a Cauchy problem for the wave equation with data on a time-like hyperplane”, Proceedings of the International Conference Days on Diffraction, 2016, 31–34
[12] E. T. Quinto, A. Rieder, T. Schuster, “Local inversion of the sonar transform regularized by the approximate inverse”, Inverse Problems, 27:3 (2011), 035006 | DOI | MR | Zbl
[13] D. Finch, S. K. Patch, Rakesh, “Determining a Function from Its Mean Values Over a Family of Spheres”, SIAM J. Math. Anal., 35:5 (2004), 1213–1240 | DOI | MR | Zbl
[14] D. Finch, M. Haltmeier, Rakesh, “Inversion of spherical means and the wave equation in even dimensions”, SIAM J. Appl. Math., 68 (2007), 392–412 | DOI | MR | Zbl
[15] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki., v. 2, Uravneniya s chastnymi proizvodnymi, Mir, Moskva, 1964
[16] V. P. Palamodov, “Reconstruction from Limited Data of Arc Means”, J. Fourier Anal. Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl
[17] M. N. Demchenko, “Reconstruction of solution to the wave equation from Cauchy data on the boundary”, Proceedings of the International Conference Days on Diffraction, 2018, 66–70
[18] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, Moskva, 1986