Scattering of electromagnetic waves on the array of thin dielectric structures
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 86-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This research concerns with the scattering of electromagnetic waves by thin dielectric impediments in 2D geometry. Dielectric and spatial properties of the impediments are modeled by varying the inhomogeneous component of the refractive index. It is supposed, that each impediment has an arbitrary finite length, while width is much less in comparison with the wavelength. The proposed approach allows to solve the scattering problemsimultaneously on several obstacles. A system of integral equations is derived, whose unique solvability is discussed.
@article{ZNSL_2018_471_a5,
     author = {S. A. Vavilov and M. S. Lytaev},
     title = {Scattering of electromagnetic waves on the array of thin dielectric structures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--98},
     year = {2018},
     volume = {471},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a5/}
}
TY  - JOUR
AU  - S. A. Vavilov
AU  - M. S. Lytaev
TI  - Scattering of electromagnetic waves on the array of thin dielectric structures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 86
EP  - 98
VL  - 471
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a5/
LA  - ru
ID  - ZNSL_2018_471_a5
ER  - 
%0 Journal Article
%A S. A. Vavilov
%A M. S. Lytaev
%T Scattering of electromagnetic waves on the array of thin dielectric structures
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 86-98
%V 471
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a5/
%G ru
%F ZNSL_2018_471_a5
S. A. Vavilov; M. S. Lytaev. Scattering of electromagnetic waves on the array of thin dielectric structures. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 86-98. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a5/

[1] J. Deygout, “Multiple knife-edge diffraction of microwaves”, IEEE Trans. Antennas and Propagation, 14:4 (1966), 480–489 | DOI

[2] J. Gopalakrishnan, Sh. Moskow, F. Santosa, “Asymptotic and numerical techniques for resonances of thin photonic structures”, SIAM J. Appl. Math., 69:1 (2008), 37–63 | DOI | MR | Zbl

[3] M. J. Mills, M. D. Collins, J. F. Lingevitch, “Two-way parabolic equation techniques for diffraction and scattering problems”, Wave Motion, 31:2 (2000), 173–180 | DOI | Zbl

[4] O. Ozgun, G. Apaydin, M. Kuzuoglu, L. Sevgi, “PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain”, Comput. Phys. Commun., 182:12 (2011), 2638–2654 | DOI

[5] O. V. Shapoval, “Comparison of refractive-index sensitivities of optical-mode resonances on a finite comb-like grating of silver nanostrips”, IEEE J. Quantum Electronics, 51:4 (2015), 1–8 | DOI

[6] S. A. Vavilov, M. S. Lytaev, “Calibration and Verification of Models Defining Radar-Visibility Zones in Marine Geoinformation Systems”, Information Fusion and Intelligent Geographic Information Systems (IF'17), Springer, 2018, 115–125

[7] S. A. Vavilov, M. S. Lytaev, “Modelnoe uravnenie rasseyaniya elektromagnitnykh voln na tonkikh dielektrikakh”, Zap. nauchn. semin. POMI, 461, 2017, 95–106

[8] L. A. Vainshtein, Teoriya difraktsii i metod faktorizatsii, Sov. radio, 1966

[9] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980