On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 76-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Hörmander have presented a remarkable example of a solution of the homogeneous wave equation, which has a singularity at a running point. We are concerned with analytic investigation of this solution for the case of three spatial variables. We describe its support, study its behavior near the singular point and establish its local integrability. We observe that the Hörmander solution is a specialization of a solution found by Bateman five decades in advance.
@article{ZNSL_2018_471_a4,
     author = {A. S. Blagoveshchensky and A. M. Tagirdzhanov and A. P. Kiselev},
     title = {On the {Bateman--H\"ormander} solution of the wave equation, having a~singularity at a~running point},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {76--85},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/}
}
TY  - JOUR
AU  - A. S. Blagoveshchensky
AU  - A. M. Tagirdzhanov
AU  - A. P. Kiselev
TI  - On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 76
EP  - 85
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/
LA  - en
ID  - ZNSL_2018_471_a4
ER  - 
%0 Journal Article
%A A. S. Blagoveshchensky
%A A. M. Tagirdzhanov
%A A. P. Kiselev
%T On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 76-85
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/
%G en
%F ZNSL_2018_471_a4
A. S. Blagoveshchensky; A. M. Tagirdzhanov; A. P. Kiselev. On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 76-85. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/