@article{ZNSL_2018_471_a4,
author = {A. S. Blagoveshchensky and A. M. Tagirdzhanov and A. P. Kiselev},
title = {On the {Bateman{\textendash}H\"ormander} solution of the wave equation, having a~singularity at a~running point},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--85},
year = {2018},
volume = {471},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/}
}
TY - JOUR AU - A. S. Blagoveshchensky AU - A. M. Tagirdzhanov AU - A. P. Kiselev TI - On the Bateman–Hörmander solution of the wave equation, having a singularity at a running point JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 76 EP - 85 VL - 471 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/ LA - en ID - ZNSL_2018_471_a4 ER -
%0 Journal Article %A A. S. Blagoveshchensky %A A. M. Tagirdzhanov %A A. P. Kiselev %T On the Bateman–Hörmander solution of the wave equation, having a singularity at a running point %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 76-85 %V 471 %U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/ %G en %F ZNSL_2018_471_a4
A. S. Blagoveshchensky; A. M. Tagirdzhanov; A. P. Kiselev. On the Bateman–Hörmander solution of the wave equation, having a singularity at a running point. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 76-85. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/
[1] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 | MR | Zbl
[2] H. Bateman, “The conformal transformations of space of four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR | Zbl
[3] H. Bateman, The Mathematical Analysis of Electrical and OpticalWave-Motion on the Basis of Maxwell's Equations, Dover, NY, 1955 | MR
[4] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Pergamon, Oxford, 1971 | MR
[5] P. Hillion, “The Courant–Hilbert solutions of the wave equation”, J. Math. Phys., 33:8 (1992), 2749–2753 | DOI | MR | Zbl
[6] A. P. Kiselev, M. V. Perel, “Highly localized solutions of the wave equation”, J. Math. Phys., 41:4 (2000), 1934–1955 | DOI | MR | Zbl
[7] A. P. Kiselev, “Localized light waves: Paraxial and exact solutions of the wave equation (a review)”, Optics and Spectroscopy, 102:4 (2007), 603–622 | DOI
[8] I. M. Besieris, A. M. Shaarawi, A. M. Attiya, “Bateman conformal transformations within the framework of the bidirectional spectral representation”, Progress in Electromagnetics Research, 48 (2004), 201–231 | DOI
[9] A. P. Kiselev, A. B. Plachenov, “Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalizations of the Bateman solution”, J. Math. Sci., 185:4 (2012), 605–610 | DOI | MR | Zbl
[10] V. S. Vladimirov, Equations of Mathematical Physics, Mir, Moscow, 1985 | MR
[11] A. S. Blagoveshchensky, “Plane waves, Bateman's solutions, and sources at infinity”, J. Math. Sci., 214:3 (2016), 260–267 | DOI | MR | Zbl
[12] A. S. Blagovestchenskii, A. P. Kiselev, A. M. Tagirdzhanov, “Simple solutions of the wave equation with a singularity at a running point, pased on the complexified Bateman solution”, J. Math. Sci., 224:1 (2017), 47–53 | DOI | MR | Zbl