On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 76-85
Voir la notice de l'article provenant de la source Math-Net.Ru
Hörmander have presented a remarkable example of a solution of the homogeneous wave equation, which has a singularity at a running point. We are concerned with analytic investigation of this solution for the case of three spatial variables. We describe its support, study its behavior near the singular point and establish its local integrability. We observe that the Hörmander solution is a specialization of a solution found by Bateman five decades in advance.
@article{ZNSL_2018_471_a4,
author = {A. S. Blagoveshchensky and A. M. Tagirdzhanov and A. P. Kiselev},
title = {On the {Bateman--H\"ormander} solution of the wave equation, having a~singularity at a~running point},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--85},
publisher = {mathdoc},
volume = {471},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/}
}
TY - JOUR AU - A. S. Blagoveshchensky AU - A. M. Tagirdzhanov AU - A. P. Kiselev TI - On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 76 EP - 85 VL - 471 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/ LA - en ID - ZNSL_2018_471_a4 ER -
%0 Journal Article %A A. S. Blagoveshchensky %A A. M. Tagirdzhanov %A A. P. Kiselev %T On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 76-85 %V 471 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/ %G en %F ZNSL_2018_471_a4
A. S. Blagoveshchensky; A. M. Tagirdzhanov; A. P. Kiselev. On the Bateman--H\"ormander solution of the wave equation, having a~singularity at a~running point. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 76-85. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a4/