On waves generated by sources localized at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 59-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The space-time $\mathbb R^4$ is compactified by adding the manifold of infinitely distant points. The problem of constructing the solution of the wave equation with the right-hand side (the source of waves) which is a generalized function supported by the variety of infinitely distant points is posed and solved. Strict necessary and sufficient conditions that the source must satisfy, are formulated.
@article{ZNSL_2018_471_a3,
     author = {A. S. Blagoveschensky},
     title = {On waves generated by sources localized at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/}
}
TY  - JOUR
AU  - A. S. Blagoveschensky
TI  - On waves generated by sources localized at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 59
EP  - 75
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/
LA  - ru
ID  - ZNSL_2018_471_a3
ER  - 
%0 Journal Article
%A A. S. Blagoveschensky
%T On waves generated by sources localized at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 59-75
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/
%G ru
%F ZNSL_2018_471_a3
A. S. Blagoveschensky. On waves generated by sources localized at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 59-75. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/