On waves generated by sources localized at infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 59-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The space-time $\mathbb R^4$ is compactified by adding the manifold of infinitely distant points. The problem of constructing the solution of the wave equation with the right-hand side (the source of waves) which is a generalized function supported by the variety of infinitely distant points is posed and solved. Strict necessary and sufficient conditions that the source must satisfy, are formulated.
@article{ZNSL_2018_471_a3,
     author = {A. S. Blagoveschensky},
     title = {On waves generated by sources localized at infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--75},
     year = {2018},
     volume = {471},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/}
}
TY  - JOUR
AU  - A. S. Blagoveschensky
TI  - On waves generated by sources localized at infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 59
EP  - 75
VL  - 471
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/
LA  - ru
ID  - ZNSL_2018_471_a3
ER  - 
%0 Journal Article
%A A. S. Blagoveschensky
%T On waves generated by sources localized at infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 59-75
%V 471
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/
%G ru
%F ZNSL_2018_471_a3
A. S. Blagoveschensky. On waves generated by sources localized at infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 59-75. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a3/

[1] A. Blagovestchensky, “On wave fields the sources disposed in the infinity”, J. Inv. Ill-posed Problems, 16 (2008), 1–11 | DOI | MR

[2] A. S. Blagoveschenskii, “Ploskie volny, resheniya Beitmena i istochniki na beskonechnosti”, Zap. nauchn. semin. POMI, 426, 2014, 23–33 | MR | Zbl

[3] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[4] A. S. Blagoveschenskii, “O nekotorykh novykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln, Nauka, L., 1971

[5] Z. Penrouz, V. Rindler, Spinory i prostranstvo-vremya. Spinornye i tvistornye metody v geometrii prostranstva-vremeni, Mir, M., 1988 | MR

[6] A. S. Blagoveschenskii, “Obobschennyi operator Dalambera na kompaktifitsirovannom psevdoevklidovom prostranstve”, Matem. zametki, 85:5 (2009), 652–660 | DOI | MR | Zbl

[7] H. Bateman, “The conformal transformations in four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR | Zbl