@article{ZNSL_2018_471_a14,
author = {A. A. Fedotov},
title = {On adiabatic normal modes in a~wedge shaped sea},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {261--285},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/}
}
A. A. Fedotov. On adiabatic normal modes in a wedge shaped sea. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 261-285. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/
[1] J. M. Arnold, L. B. Felsen, “Rays and local modes in a wedge-shaped ocean”, J. Acoust. Soc. Amer., 73 (1983), 1105–1119 | DOI | MR | Zbl
[2] V. Babich, M. Lyalinov, V. Grikurov, Diffraction theory: the Sommerfeld-Malyuzhinets technique, Alpha Science, Oxford, 2008
[3] L. Brekhovskikh, Yu. Lysanov, Fundamentals of ocean acoustics., Springer-Verlag, Berlin–Heidelberg–GmbH, 1982 | MR
[4] V. S. Buldyrev, V. S. Buslaev, “Asimptoticheskie metody v zadachakh rasprostraneniya zvuka v okeanicheskikh volnovodakh i ikh chislennaya realizatsiya”, Zap. nauchn. semin. LOMI, 117, 1981, 39–77 | Zbl
[5] Frank W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974 | MR
[6] A. B. Smirnov, A. A. Fedotov, “Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra”, Funct. Anal. Appl., 50:1 (2016), 76–79 | DOI | MR | Zbl
[7] A. Fedotov, Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues, 2016, arXiv: 1609.09473
[8] A. D. Pierce, “Extension of the method of normal modes to sound propagation in an almost-stratified medium”, J. Acoust. Soc. Amer., 37 (1965), 19–27 | DOI
[9] A. D. Pierce, “Guided mode disappearance during upslope propagation in variable depth shallow water overlying a fluid bottom”, J. Acoust. Soc. Amer., 72 (1982), 523–531 | DOI | MR | Zbl
[10] S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lec. Notes Math., 1821, Springer-Verlag, Berlin–Heidelberg, 2003 | DOI | MR | Zbl
[11] R. Wong, Asymptotic approximations of integrals, SIAM, Philadelphia, 2001 | MR | Zbl