On adiabatic normal modes in a wedge shaped sea
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 261-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a two-dimensional problem that is a model for sound propagation in a narrow water wedge near the shore of a sea. We explicitly construct a solution to the Helmholtz equation that is asymptotically a normal wave propagating along “water” wedge to the “shore”. The solution satisfies the Helmholtz equation in the quadrant one side of which is “the surface of the water”, and the second is perpendicular to it, starts at the top of the wedge and goes into the “bottom”. Boundary conditions at wedge boundaries and at infinity in the “bottom” are satisfied.
@article{ZNSL_2018_471_a14,
     author = {A. A. Fedotov},
     title = {On adiabatic normal modes in a~wedge shaped sea},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--285},
     year = {2018},
     volume = {471},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/}
}
TY  - JOUR
AU  - A. A. Fedotov
TI  - On adiabatic normal modes in a wedge shaped sea
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 261
EP  - 285
VL  - 471
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/
LA  - ru
ID  - ZNSL_2018_471_a14
ER  - 
%0 Journal Article
%A A. A. Fedotov
%T On adiabatic normal modes in a wedge shaped sea
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 261-285
%V 471
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/
%G ru
%F ZNSL_2018_471_a14
A. A. Fedotov. On adiabatic normal modes in a wedge shaped sea. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 261-285. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a14/

[1] J. M. Arnold, L. B. Felsen, “Rays and local modes in a wedge-shaped ocean”, J. Acoust. Soc. Amer., 73 (1983), 1105–1119 | DOI | MR | Zbl

[2] V. Babich, M. Lyalinov, V. Grikurov, Diffraction theory: the Sommerfeld-Malyuzhinets technique, Alpha Science, Oxford, 2008

[3] L. Brekhovskikh, Yu. Lysanov, Fundamentals of ocean acoustics., Springer-Verlag, Berlin–Heidelberg–GmbH, 1982 | MR

[4] V. S. Buldyrev, V. S. Buslaev, “Asimptoticheskie metody v zadachakh rasprostraneniya zvuka v okeanicheskikh volnovodakh i ikh chislennaya realizatsiya”, Zap. nauchn. semin. LOMI, 117, 1981, 39–77 | Zbl

[5] Frank W. J. Olver, Asymptotics and special functions, Academic Press, New York, 1974 | MR

[6] A. B. Smirnov, A. A. Fedotov, “Adiabatic Evolution Generated by a Schrödinger Operator with Discrete and Continuous Spectra”, Funct. Anal. Appl., 50:1 (2016), 76–79 | DOI | MR | Zbl

[7] A. Fedotov, Adiabatic evolution generated by a one-dimensional Schrödinger operator with decreasing number of eigenvalues, 2016, arXiv: 1609.09473

[8] A. D. Pierce, “Extension of the method of normal modes to sound propagation in an almost-stratified medium”, J. Acoust. Soc. Amer., 37 (1965), 19–27 | DOI

[9] A. D. Pierce, “Guided mode disappearance during upslope propagation in variable depth shallow water overlying a fluid bottom”, J. Acoust. Soc. Amer., 72 (1982), 523–531 | DOI | MR | Zbl

[10] S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lec. Notes Math., 1821, Springer-Verlag, Berlin–Heidelberg, 2003 | DOI | MR | Zbl

[11] R. Wong, Asymptotic approximations of integrals, SIAM, Philadelphia, 2001 | MR | Zbl