@article{ZNSL_2018_471_a13,
author = {S. A. Simonov},
title = {Wave model of the {Sturm{\textendash}Liouville} operator on an interval},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {225--260},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a13/}
}
S. A. Simonov. Wave model of the Sturm–Liouville operator on an interval. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 225-260. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a13/
[1] M. I. Belishev, “K zadache Katsa o vosstanovlenii formy oblasti po spektru zadachi Dirikhle”, Zap. nauchn. semin LOMI, 173, 1988, 30–41 | MR | Zbl
[2] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, assotsiirovannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauchn. semin POMI, 409, 2012, 17–39 | MR
[3] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma–Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33 | MR
[4] G. Birkgof, Teoriya reshetok, Nauka, Moskva, 1984
[5] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostanstve, LGU, 1980
[6] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. Moskovskogo matem. obsch., 1, 1952, 187–246 | Zbl
[7] D. Kelli, Obschaya topologiya, Nauka, Moskva, 1981
[8] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, Moskva, 1989
[9] A. N. Kochubei, “O rasshireniyakh simmetricheskikh operatorov i simmetricheskikh binarnykh otnoshenii”, Matem. zametki, 17:1 (1975), 41–48 | MR | Zbl
[10] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, Moskva, 1969
[11] A. V. Shtraus, “Funktsionalnye modeli i obobschennye spektralnye funktsii simmetricheskikh operatorov”, Algebra i analiz, 10:5 (1998), 1–76 | MR | Zbl
[12] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), 1–45 | DOI | MR
[13] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), 1–67 | DOI | MR
[14] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl
[15] M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl
[16] V. A. Derkach, M. M. Malamud, “The extension theory of Hermitian operators and the moment problem”, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl
[17] J. M. Kim, “Compactness in $\mathcal B(X)$”, J. Math. Anal. Appl., 320 (2006), 619–631 | DOI | MR | Zbl
[18] V. Ryzhov, “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 305–331 | MR | Zbl
[19] S. A. Simonov, “Wave model of the regular Sturm–Liouville operator”, Proceedings of 2017 Days on Diffraction, 2017, 300–303; arXiv: 1801.02011