@article{ZNSL_2018_471_a12,
author = {M. M. Popov},
title = {On {Morse} index for geodesic lines on smooth surfaces imbedded in~$\mathbb R^3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {211--224},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a12/}
}
M. M. Popov. On Morse index for geodesic lines on smooth surfaces imbedded in $\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 211-224. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a12/
[1] Dzh. Milnor, Teoriya Morsa, Mir, Moskva, 1965
[2] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, Moskva, 1976
[3] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funk. analiz i ego prilozh., 1:1 (1967), 1–14 | MR | Zbl
[4] M. M. Popov, “O vychislenii indeksa Morsa i prodolzhenii luchevykh formul za kaustiki”, Zap. nauchn. semin. POMI, 438, 2015, 225–235 | MR
[5] V. I. Smirnov, Kurs vysshei matematiki, v. IV, Fizmatgiz, Moskva, 1958
[6] M. M. Popov, Ray theory and Gaussian beam method for geophysicists, EDUFBA, Salvador-Bahia, 2002
[7] M. M. Popov, “Ob odnom metode vychisleniya geometricheskogo raskhozhdeniya v neodnorodnoi srede, soderzhaschei granitsy razdela”, Dokl. AN SSSR, 237:5 (1977), 1059–1062
[8] V. I. Smirnov, Kurs vysshei matematiki, v. II, Nauka, Moskva, 1967