@article{ZNSL_2018_471_a11,
author = {S. A. Nazarov},
title = {Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {168--210},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a11/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 168 EP - 210 VL - 471 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a11/ LA - ru ID - ZNSL_2018_471_a11 ER -
S. A. Nazarov. Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 168-210. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a11/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980
[3] A. V. Sobolev, J. Walthoe, “Absolute continuity in periodic waveguides”, Proc. London Math. Soc., 85:1 (2002), 717–741 | DOI | MR | Zbl
[4] T. A. Suslina, R. G. Shternberg, “Absolyutnaya nepreryvnost spektra operatora Shredingera s metrikoi v dvumernom periodicheskom volnovode”, Algebra i Analiz, 14:2 (2002), 159–206 | MR | Zbl
[5] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i Analiz, 21:1 (2009), 133–152 | MR | Zbl
[6] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Doklady AN SSSR, 73 (1950), 1117–1120 | Zbl
[7] S. A. Nazarov, “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izvestiya AN SSSR. Seriya matem., 45:1 (1981), 101–112 | MR | Zbl
[8] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[9] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[10] M. M. Skriganov, “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Trudy matem. in-ta im. V. A. Steklova AN SSSR, 171, 1985, 3–122 | MR | Zbl
[11] P. Kuchment, Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl
[12] P. A. Kuchment, “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi matem. nauk, 37:4 (1982), 3–52 | MR | Zbl
[13] P. Kuchment, “The mathematics of photonic crystals”, Mathematical Modeling in Optical Science, Ch. 7, Frontiers in Applied Mathematics, 22, SIAM, 2001, 207–272 | MR
[14] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR
[15] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly coupled bound states in quantum waveguides”, Proc. Amer. Math. Soc., 125:8 (1997), 1487–1495 | DOI | MR | Zbl
[16] V. V. Grushin, “O sobstvennykh znacheniyakh finitno vozmuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | DOI | MR | Zbl
[17] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, Teoreticheskaya i matematicheskaya fizika, 145:3 (2005), 358–371 | DOI | MR | Zbl
[18] D. I. Borisov, “Diskretnyi spektr pary nesimmetrichnykh volnovodov, soedinennykh oknom”, Matem. sbornik, 197:4 (2006), 3–32 | DOI | MR | Zbl
[19] S. A. Nazarov, “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zhurnal, 51:5 (2010), 1086–1101 | MR | Zbl
[20] M. Sh. Birman, M. Z. Solomyak, “Discrete negative spectrum under non-regular perturbations (polyharmonic operators, Schrödinger operators, with a magnetic fields, periodic operators)”, Rigorous Results in Quantum Dynamics (Liblice, 1990), World Sci. Publishing, River Edge, NJ, 1991, 25–36 | MR
[21] M. Sh. Birman, “Diskretnyi spektr periodicheskogo operatora Shredingera, vozmuschennogo ubyvayuschim potentsialom”, Algebra i Analiz, 8:1 (1996), 3–20 | MR | Zbl
[22] M. Sh. Birman, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization, Math. Top., 8, Akademie Verlag, Berlin, 1995, 334–352 | MR | Zbl
[23] M. Sh. Birman, “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II. Neregulyarnye vozmuscheniya”, Algebra i Analiz, 9:6 (1997), 62–89 | MR | Zbl
[24] A. Figotin, A.Klein, “Midgap defect modes in dielectric and acoustic media”, SIAM J. Appl. Math., 58:6 (1998), 1748–1773 | DOI | MR | Zbl
[25] H. Ammari, F. Santosa, “Guided Waves in a Photonic Bandgap Structure with a Line Defect”, SIAM Journal on Applied Mathematics, 64:6 (2004), 2018–2033 | DOI | MR | Zbl
[26] D. Miao, F. Ma, “On guided waves created by line defects”, J. Stat. Phys., 130 (2008), 1197–1215 | DOI | MR | Zbl
[27] S. A. Nazarov, “Lakuny i sobstvennye chastoty v spektre periodicheskogo akusticheskogo volnovoda”, Akusticheskii zhurnal, 59:3 (2013), 312–321 | DOI
[28] B. M. Brown, V. Hoang, M. Plum, I. Wood, “Spectrum created by line defects in periodic structures”, Math. Nachr., 287 (2014), 1972–1985 | DOI | MR | Zbl
[29] S. A. Nazarov, “Ogranichennye resheniya v $\mathrm T$-obraznom volnovode i spektralnye svoistva lestnitsy Dirikhle”, Zhurnal vychisl. matem. i matem. fiz., 54:8 (2014), 1299–1318 | DOI | MR | Zbl
[30] B. Delourme, S. Fliss, P. Joly, E. Vasilevskaya, “Trapped modes in thin and infinite ladder like domains. Part 1: Existence results”, Asymptotic Analysis, 103:3 (2017), 103–134 | DOI | MR | Zbl
[31] S. A. Nazarov, “Asimptotika sobstvennykh chisel v spektralnykh lakunakh pri regulyarnom vozmuschenii stenok periodicheskogo volnovoda”, Problemy matem. analiza, 89, Novosibirsk, 2017, 63–98 | Zbl
[32] S. A. Nazarov, “Pochti stoyachie volny v periodicheskom volnovode s rezonatorom i okoloporogovye sobstvennye chisla”, Algebra i analiz, 28:3 (2016), 111–160 | MR
[33] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[34] S. A. Nazarov, “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teoreticheskaya i matem. fizika, 167:2 (2011), 239–263 | DOI | MR
[35] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funktsionalnyi analiz i ego prilozheniya, 47:3 (2013), 37–53 | DOI | MR | Zbl
[36] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965
[37] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[38] W. G. Mazja, S. A. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, Akademie-Verlag, Berlin, 1991 | MR
[39] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967
[40] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989
[41] S. A. Nazarov, “Otkrytie lakuny v nepreryvnom spektre periodicheski vozmuschennogo volnovoda”, Matem. zametki, 87:5 (2010), 764–786 | DOI | MR | Zbl
[42] F. L. Bakharev, S. A. Nazarov, K. M. Ruotsalainen, “A gap in the spectrum of the Neumann–Laplacian on a periodic waveguide”, Appl. Analysis, 88 (2012), 1–17 | MR
[43] D. Borisov, K. Pankrashkin, “Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones”, J. Physics A: Mathematical and Theoretical, 46:23 (2013), 235–203 | DOI | MR
[44] S. A. Nazarov, “Asimptotika spektralnykh lakun v regulyarno vozmuschennom periodicheskom volnovode”, Vestnik SPbGU. Ser. 1, 2:7 (2013), 54–63
[45] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izvestiya AN SSSR. Seriya matem., 48:2 (1984), 347–371 | MR | Zbl
[46] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962
[47] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[48] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292 | MR | Zbl
[49] S. A. Nazarov, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach s periodicheskimi koeffitsientami”, Vestnik LGU. Seriya 1, 3:15 (1985), 16–22 | Zbl
[50] S. A. Nazarov, “Asimptotika chastot uprugikh voln, zakhvachennykh maloi treschinoi v tsilindricheskom volnovode”, Mekhanika tverdogo tela, 2010, no. 6, 112–122
[51] S. A. Nazarov, M. Specovius-Neugebauer, J. Sokolowski, “Polarization matrices in anisotropic heterogeneous elasticity”, Asymptotic Analysis, 68:4 (2010), 189–249 | MR