Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 150-167

Voir la notice de l'article provenant de la source Math-Net.Ru

A formal approach for the construction of the Green's function in a polygonal domain with the Dirichlet boundary conditions is proposed. The complex form of the Kontorovich–Lebedev transform and reduction to a system of integral equations is exploited. The far-field asymptotics of the wave field is discussed.
@article{ZNSL_2018_471_a10,
     author = {M. A. Lyalinov},
     title = {Green{\textquoteright}s function for the {Helmholtz} equation in a~polygonal domain of special form with ideal boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--167},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 150
EP  - 167
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/
LA  - ru
ID  - ZNSL_2018_471_a10
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 150-167
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/
%G ru
%F ZNSL_2018_471_a10
M. A. Lyalinov. Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 150-167. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/