@article{ZNSL_2018_471_a10,
author = {M. A. Lyalinov},
title = {Green{\textquoteright}s function for the {Helmholtz} equation in a~polygonal domain of special form with ideal boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--167},
year = {2018},
volume = {471},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/}
}
TY - JOUR AU - M. A. Lyalinov TI - Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 150 EP - 167 VL - 471 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/ LA - ru ID - ZNSL_2018_471_a10 ER -
M. A. Lyalinov. Green’s function for the Helmholtz equation in a polygonal domain of special form with ideal boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 150-167. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/
[1] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Sci. Ser. Wave Phenom., Alpha Science, Oxford, 2008
[2] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012
[3] J.-M. L. Bernard, “A spectral approach for scattering by impedance polygons”, Q. J. Mech. Appl. Math., 59:4 (2006), 517–550 | DOI | MR | Zbl
[4] M. A. Lyalinov, “Integral equations and the scattering diagram in the problem of diffraction by two contacting wedges with polygonal boundary”, J. Math. Sci., 214:3 (2016), 322–336 | DOI | MR | Zbl
[5] D. S. Jones, “The Kontorovich-Lebedev transform”, J. Inst. Maths Appl., 26 (1980), 133–141 | DOI | MR | Zbl
[6] A. D. Avdeev, S. M. Grudskii, “O modifitsirovannom preobrazovanii Kontorovicha-Lebedeva i ego prilozhenii k zadache difraktsii tsilindricheskoi volny na idealno provodyaschem kline”, Radiotekhnika i elektronika, 39:7 (1994), 1081–1089
[7] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181 | DOI | MR | Zbl
[8] I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980 | MR
[9] L. S. Rakovschik, “Sistemy integralnykh uranenii s pochti raznostnymi operatorami”, Sibirskii Mat. Zhurnal, 3:2 (1962), 250–255