Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 150-167
Voir la notice de l'article provenant de la source Math-Net.Ru
A formal approach for the construction of the Green's function in a polygonal domain with the Dirichlet boundary conditions is proposed. The complex form of the Kontorovich–Lebedev transform and reduction to a system of integral equations is exploited. The far-field asymptotics of the wave field is discussed.
@article{ZNSL_2018_471_a10,
author = {M. A. Lyalinov},
title = {Green{\textquoteright}s function for the {Helmholtz} equation in a~polygonal domain of special form with ideal boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--167},
publisher = {mathdoc},
volume = {471},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/}
}
TY - JOUR AU - M. A. Lyalinov TI - Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 150 EP - 167 VL - 471 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/ LA - ru ID - ZNSL_2018_471_a10 ER -
%0 Journal Article %A M. A. Lyalinov %T Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions %J Zapiski Nauchnykh Seminarov POMI %D 2018 %P 150-167 %V 471 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/ %G ru %F ZNSL_2018_471_a10
M. A. Lyalinov. Green’s function for the Helmholtz equation in a~polygonal domain of special form with ideal boundary conditions. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 150-167. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a10/