The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 15-37

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problemis described in the work for the case of finite repulsive pair potentials.
@article{ZNSL_2018_471_a1,
     author = {I. V. Baibulov and A. M. Budylin and S. B. Levin},
     title = {The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--37},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/}
}
TY  - JOUR
AU  - I. V. Baibulov
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 15
EP  - 37
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/
LA  - ru
ID  - ZNSL_2018_471_a1
ER  - 
%0 Journal Article
%A I. V. Baibulov
%A A. M. Budylin
%A S. B. Levin
%T The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 15-37
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/
%G ru
%F ZNSL_2018_471_a1
I. V. Baibulov; A. M. Budylin; S. B. Levin. The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 15-37. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/