The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 15-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The structure of the absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problemis described in the work for the case of finite repulsive pair potentials.
@article{ZNSL_2018_471_a1,
     author = {I. V. Baibulov and A. M. Budylin and S. B. Levin},
     title = {The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--37},
     year = {2018},
     volume = {471},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/}
}
TY  - JOUR
AU  - I. V. Baibulov
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 15
EP  - 37
VL  - 471
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/
LA  - ru
ID  - ZNSL_2018_471_a1
ER  - 
%0 Journal Article
%A I. V. Baibulov
%A A. M. Budylin
%A S. B. Levin
%T The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 15-37
%V 471
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/
%G ru
%F ZNSL_2018_471_a1
I. V. Baibulov; A. M. Budylin; S. B. Levin. The absolutely continuous spectrum eigenfunctions asymptotics of the three one-dimensional quantum particles scattering problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 15-37. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a1/

[1] E. Mourre, “Absence of singular continuous spectrum for certain self-adjoint operators”, Commun. Math. Phys., 78 (1981), 391–408 | DOI | MR | Zbl

[2] P. Perry, I. M. Sigal, B. Simon, “Spectral analysis of $N$-body Schrödinger operators”, Ann. Math., 114 (1981), 519–567 | DOI | MR | Zbl

[3] L. D. Faddeev, “Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits”, Tr. MIAN SSSR, 69, 1963, 3–122 | MR | Zbl

[4] S. P. Merkurev, L. D. Faddev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985

[5] I. V. Baibulov, A. M. Budylin, S. B. Levin, “Zadacha rasseyaniya neskolkikh odnomernykh kvantovykh chastits. Struktura i asimptotika predelnykh znachenii yadra rezolventy”, Zap. nauchn. semin. POMI, 461, 2017, 14–51 | MR

[6] A. M. Budylin, V. S. Buslaev, “Reflection operator and their applications to asymptotic investigations of semiclassical integral equations”, Adv. Soviet Math., 7, AMS, Providence, 1991, 107–157 | MR

[7] V. S. Buslaev, S. B. Levin, “Asymptotic Behavior of the Eigenfunctions of the Many-particle Shrödinger Operator. I. One-dimentional Particles”, Amer. Math. Soc. Transl., 225:2 (2008), 55–71 | MR | Zbl

[8] V. S. Buslaev, S. B. Levin, “Asimptoticheskoe povedenie sobstvennykh funktsii trekhchastichnogo operatora Shredingera. II Odnomernye zaryazhennye chastitsy”, Algebra i analiz, 22:3 (2010), 60–79 | MR | Zbl

[9] V. S. Buslaev, S. B. Levin, P. Neittaannmäki, T. Ojala, “New approach to numerical computation of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator. I One-dimensional particles, short-range pair potentials”, J. Phys. A: Math.Theor., 43 (2010), 285205 | DOI | MR | Zbl

[10] V. S. Buslaev, S. P. Merkurev, S. P. Salikov, “O difraktsionnom kharaktere rasseyaniya v kvantovoi sisteme trekh odnomernykh chastits”, Problemy mat. fiziki, 9, LGU, 1979, 14–30