The point-source of electromagnetic waves in the case of nonhomogeneous media (high-frequency ansatz and dual to him singular solution)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 7-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The Maxwell equations for nonhomogeneous media is considered. The formula (in the first approximation ) for non-stationary point source of waves is found. The Fourier transform by $t$ of this expression leads to short wave asymptotic formula for wave field of high frequency point source of electromagnetic oscillations. The large parameter is the frequency.
@article{ZNSL_2018_471_a0,
     author = {V. M. Babich},
     title = {The point-source of electromagnetic waves in the case of nonhomogeneous media (high-frequency ansatz and dual to him singular solution)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {471},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a0/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - The point-source of electromagnetic waves in the case of nonhomogeneous media (high-frequency ansatz and dual to him singular solution)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 14
VL  - 471
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a0/
LA  - ru
ID  - ZNSL_2018_471_a0
ER  - 
%0 Journal Article
%A V. M. Babich
%T The point-source of electromagnetic waves in the case of nonhomogeneous media (high-frequency ansatz and dual to him singular solution)
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-14
%V 471
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a0/
%G ru
%F ZNSL_2018_471_a0
V. M. Babich. The point-source of electromagnetic waves in the case of nonhomogeneous media (high-frequency ansatz and dual to him singular solution). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 48, Tome 471 (2018), pp. 7-14. http://geodesic.mathdoc.fr/item/ZNSL_2018_471_a0/