Plotkin's geometric equivalence, Mal'cev's closure and incompressible nilpotent groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 147-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1997 B. I. Plotkin introduced the notion of geometric equivalence of algebraic structures and posed the question: Is it true that every nilpotent torsion-free group is geometrically equivalent to its Mal'cev's closure? A negative answer was given by V. V. Bludov and B. V. Gusev in 2007 in the form of three counterexamples. In this paper we present an infinite series of counterexamples of unbounded Hirsch rank and nilpotency degree.
@article{ZNSL_2018_470_a9,
     author = {G. A. Noskov},
     title = {Plotkin's geometric equivalence, {Mal'cev's} closure and incompressible nilpotent groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--161},
     year = {2018},
     volume = {470},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/}
}
TY  - JOUR
AU  - G. A. Noskov
TI  - Plotkin's geometric equivalence, Mal'cev's closure and incompressible nilpotent groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 147
EP  - 161
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/
LA  - en
ID  - ZNSL_2018_470_a9
ER  - 
%0 Journal Article
%A G. A. Noskov
%T Plotkin's geometric equivalence, Mal'cev's closure and incompressible nilpotent groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 147-161
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/
%G en
%F ZNSL_2018_470_a9
G. A. Noskov. Plotkin's geometric equivalence, Mal'cev's closure and incompressible nilpotent groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 147-161. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/

[1] I. Belegradek, “On co-Hopfian nilpotent groups”, Bull. London Math. Soc., 35 (2003), 805–811 | DOI | MR | Zbl

[2] A. Berzins, “Geometrical equivalence of algebras.”, Int. J. Algebra Comput., 11:4 (2001), 447–456 | DOI | MR | Zbl

[3] V. V. Bludov, B. V. Gusev, “Geometric equivalence of groups”, Tr. Inst. Mat. Mekh. UrO RAN, 13, no. 1, 2007, 57–78 | MR | Zbl

[4] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[5] R. Camm, “Simple free products”, J. London Math. Soc., 28 (1953), 66–76 | DOI | MR | Zbl

[6] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer Ergebinsberichte, 89, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[7] M. Goze, You. B. Khakimdjanov, Nilpotent Lie algebras, Kluwer Academics Publishers, 1996 | MR | Zbl

[8] É. B. Vinberg, V. V. Gorbatsevich, A. L. Onishchik, Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sciences, 41, Springer-Verlag, 1994 | MR | Zbl

[9] R. W. Goodman, Nilpotent Lie Groups: Structure and Applications to Analysis, Lect. Notes Math., 562, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[10] R. Göbel, S. Shelah, “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130:3, 673–674 | DOI | MR | Zbl

[11] H. Hamrouni, “Euler characteristics on a class of finitely generated nilpotent groups”, Osaka J. Math., 50 (2013), 339–346 | MR | Zbl

[12] G. Hochschild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965 | MR | Zbl

[13] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts Math., 62, Springer-Verlag, New York, 1979 | DOI | MR | Zbl

[14] Yu. Khakimdjanov, “Characteristically nilpotent Lie algebras”, Math. Sb., 181:5 (1990), 642–655 | MR | Zbl

[15] E. I. Khukhro, V. D. Mazurov, Unsolved problems in group theory. The Kourovka Notebook, 16th ed., Russian Acad. Sci., Novosibirsk, 2006 | MR | Zbl

[16] G. Leger, S. Tôgô, “Characteristically nilpotent Lie algebras”, Duke Math. J., 26 (1959), 623–628 | DOI | MR | Zbl

[17] A. I. Mal'cev, “Nilpotent torsion-free groups”, Izv. Akad. Nauk. SSSR. Ser. Mat., 13:3 (1949), 201–212 | MR | Zbl

[18] A. I. Mal'cev, “On a class of homogeneous spaces”, Izv. Akad. Nauk. SSSR. Ser. Mat., 13:1 (1949), 9–32 | MR | Zbl

[19] A. A. Mishchenko, Model-theoretic and algebra-geometric problems for nilpotent partial commutative groups, PhD thesis, Omsk, 2009

[20] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[21] D. Nikolova, B. Plotkin, “Some notes on universal algebraic geometry”, Algebra, Proc. Int. Conf. on Algebra on the Occasion of the 90th Birthday of A. G. Kurosh (Moscow, Russia, 1998), Walter De Gruyter Publ., Berlin, 1999, 237–261 | MR

[22] B. Plotkin, “Algebraic logic, varieties of algebras and algebraic varieties”, Proc. Int. Alg. Conf. (St. Petersburg, 1995), St. Petersburg, 1999, 189–271

[23] B. Plotkin, “Varieties of algebras and algebraic varieties”, Israel J. Math., 96:2 (1996), 511–522 | DOI | MR | Zbl

[24] B. Plotkin, “Some notions of algebraic geometry in universal algebra”, Algebra Analysis, 9:4 (1997), 224–248 | MR | Zbl

[25] B. Plotkin, “Varieties of algebras and algebraic varieties: Categories of algebraic varieties”, Siberian Adv. Math., 7:2 (1997), 64–97 | MR | Zbl

[26] B. Plotkin, “Radicals in groups, operations on classes of groups, and radical classes”, Transl. II Ser. Amer. Math. Soc., 119 (1983), 89–118 | MR | Zbl

[27] B. Plotkin, E. Plotkin, A. Tsurkov, “Geometrical equivalence of groups”, Commun. Algebra, 27:8 (1999), 4015–4025 | DOI | MR | Zbl

[28] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972 | MR | Zbl

[29] A. Tsurkov, “Geometrical equivalence of nilpotent groups”, Zap. Nauchn. Semin. POMI, 330, 2006, 259–270 | MR | Zbl

[30] S. Yamaguchi, “On some classes of nilpotent Lie algebras and their automorphism groups”, Mem. Fac. Sci. Kyushu Univ., 35, 1981, 341–351 | MR | Zbl