@article{ZNSL_2018_470_a9,
author = {G. A. Noskov},
title = {Plotkin's geometric equivalence, {Mal'cev's} closure and incompressible nilpotent groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--161},
year = {2018},
volume = {470},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/}
}
G. A. Noskov. Plotkin's geometric equivalence, Mal'cev's closure and incompressible nilpotent groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 147-161. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a9/
[1] I. Belegradek, “On co-Hopfian nilpotent groups”, Bull. London Math. Soc., 35 (2003), 805–811 | DOI | MR | Zbl
[2] A. Berzins, “Geometrical equivalence of algebras.”, Int. J. Algebra Comput., 11:4 (2001), 447–456 | DOI | MR | Zbl
[3] V. V. Bludov, B. V. Gusev, “Geometric equivalence of groups”, Tr. Inst. Mat. Mekh. UrO RAN, 13, no. 1, 2007, 57–78 | MR | Zbl
[4] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl
[5] R. Camm, “Simple free products”, J. London Math. Soc., 28 (1953), 66–76 | DOI | MR | Zbl
[6] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Springer Ergebinsberichte, 89, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[7] M. Goze, You. B. Khakimdjanov, Nilpotent Lie algebras, Kluwer Academics Publishers, 1996 | MR | Zbl
[8] É. B. Vinberg, V. V. Gorbatsevich, A. L. Onishchik, Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sciences, 41, Springer-Verlag, 1994 | MR | Zbl
[9] R. W. Goodman, Nilpotent Lie Groups: Structure and Applications to Analysis, Lect. Notes Math., 562, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[10] R. Göbel, S. Shelah, “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130:3, 673–674 | DOI | MR | Zbl
[11] H. Hamrouni, “Euler characteristics on a class of finitely generated nilpotent groups”, Osaka J. Math., 50 (2013), 339–346 | MR | Zbl
[12] G. Hochschild, The structure of Lie groups, Holden-Day Inc., San Francisco, 1965 | MR | Zbl
[13] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts Math., 62, Springer-Verlag, New York, 1979 | DOI | MR | Zbl
[14] Yu. Khakimdjanov, “Characteristically nilpotent Lie algebras”, Math. Sb., 181:5 (1990), 642–655 | MR | Zbl
[15] E. I. Khukhro, V. D. Mazurov, Unsolved problems in group theory. The Kourovka Notebook, 16th ed., Russian Acad. Sci., Novosibirsk, 2006 | MR | Zbl
[16] G. Leger, S. Tôgô, “Characteristically nilpotent Lie algebras”, Duke Math. J., 26 (1959), 623–628 | DOI | MR | Zbl
[17] A. I. Mal'cev, “Nilpotent torsion-free groups”, Izv. Akad. Nauk. SSSR. Ser. Mat., 13:3 (1949), 201–212 | MR | Zbl
[18] A. I. Mal'cev, “On a class of homogeneous spaces”, Izv. Akad. Nauk. SSSR. Ser. Mat., 13:1 (1949), 9–32 | MR | Zbl
[19] A. A. Mishchenko, Model-theoretic and algebra-geometric problems for nilpotent partial commutative groups, PhD thesis, Omsk, 2009
[20] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl
[21] D. Nikolova, B. Plotkin, “Some notes on universal algebraic geometry”, Algebra, Proc. Int. Conf. on Algebra on the Occasion of the 90th Birthday of A. G. Kurosh (Moscow, Russia, 1998), Walter De Gruyter Publ., Berlin, 1999, 237–261 | MR
[22] B. Plotkin, “Algebraic logic, varieties of algebras and algebraic varieties”, Proc. Int. Alg. Conf. (St. Petersburg, 1995), St. Petersburg, 1999, 189–271
[23] B. Plotkin, “Varieties of algebras and algebraic varieties”, Israel J. Math., 96:2 (1996), 511–522 | DOI | MR | Zbl
[24] B. Plotkin, “Some notions of algebraic geometry in universal algebra”, Algebra Analysis, 9:4 (1997), 224–248 | MR | Zbl
[25] B. Plotkin, “Varieties of algebras and algebraic varieties: Categories of algebraic varieties”, Siberian Adv. Math., 7:2 (1997), 64–97 | MR | Zbl
[26] B. Plotkin, “Radicals in groups, operations on classes of groups, and radical classes”, Transl. II Ser. Amer. Math. Soc., 119 (1983), 89–118 | MR | Zbl
[27] B. Plotkin, E. Plotkin, A. Tsurkov, “Geometrical equivalence of groups”, Commun. Algebra, 27:8 (1999), 4015–4025 | DOI | MR | Zbl
[28] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, 1972 | MR | Zbl
[29] A. Tsurkov, “Geometrical equivalence of nilpotent groups”, Zap. Nauchn. Semin. POMI, 330, 2006, 259–270 | MR | Zbl
[30] S. Yamaguchi, “On some classes of nilpotent Lie algebras and their automorphism groups”, Mem. Fac. Sci. Kyushu Univ., 35, 1981, 341–351 | MR | Zbl