@article{ZNSL_2018_470_a7,
author = {R. A. Lubkov and I. I. Nekrasov},
title = {Explicit equations for exterior square of the general linear group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--137},
year = {2018},
volume = {470},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/}
}
R. A. Lubkov; I. I. Nekrasov. Explicit equations for exterior square of the general linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/
[1] A. L. Gorodentsev, A. S. Khoroshkin, A. N. Rudakov, On syzygies of highest weight orbits, 2006
[2] R. A. Lubkov, I. Nekrasov, Overgroups of exterior powers of an elementary group. I. Levels and normalizers, 2018 | Zbl
[3] V. A. Petrov, “Overgroups of unitary groups”, K-Theory, 29 (2003), 77–108 | DOI | MR
[4] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations”, J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[5] G. M. Seitz, The Maximal Subgroups of Classical Algebraic Groups, Amer. Math. Soc., 1987 | MR | Zbl
[6] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[7] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauchn. semin. POMI, 272, 2000, 68–85 | MR | Zbl
[8] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR | Zbl
[9] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR | Zbl
[10] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR | Zbl
[11] N. A. Vavilov, E. Ya. Perelman, “Polivektornye predstavleniya $\mathrm{GL}_n$”, Zap. nauchn. semin. POMI, 338, 2006, 69–97 | MR | Zbl
[12] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1777), 235–252 | MR | Zbl