Explicit equations for exterior square of the general linear group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 120-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present several explicit systems of equations defining exterior square of the general linear group $\wedge^2\mathrm{GL}_n$ as an affine group scheme. Algebraic ingredients of the equations, exterior numbers, are translated into the language of weight diagrams corresponding to Lie groups of type $A_{n-1}$ in representation with the highest weight $\varpi_2$.
@article{ZNSL_2018_470_a7,
     author = {R. A. Lubkov and I. I. Nekrasov},
     title = {Explicit equations for exterior square of the general linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--137},
     year = {2018},
     volume = {470},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/}
}
TY  - JOUR
AU  - R. A. Lubkov
AU  - I. I. Nekrasov
TI  - Explicit equations for exterior square of the general linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 120
EP  - 137
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/
LA  - ru
ID  - ZNSL_2018_470_a7
ER  - 
%0 Journal Article
%A R. A. Lubkov
%A I. I. Nekrasov
%T Explicit equations for exterior square of the general linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 120-137
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/
%G ru
%F ZNSL_2018_470_a7
R. A. Lubkov; I. I. Nekrasov. Explicit equations for exterior square of the general linear group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a7/

[1] A. L. Gorodentsev, A. S. Khoroshkin, A. N. Rudakov, On syzygies of highest weight orbits, 2006

[2] R. A. Lubkov, I. Nekrasov, Overgroups of exterior powers of an elementary group. I. Levels and normalizers, 2018 | Zbl

[3] V. A. Petrov, “Overgroups of unitary groups”, K-Theory, 29 (2003), 77–108 | DOI | MR

[4] E. B. Plotkin, A. A. Semenov, N. A. Vavilov, “Visual basic representations”, J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[5] G. M. Seitz, The Maximal Subgroups of Classical Algebraic Groups, Amer. Math. Soc., 1987 | MR | Zbl

[6] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[7] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauchn. semin. POMI, 272, 2000, 68–85 | MR | Zbl

[8] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR | Zbl

[9] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR | Zbl

[10] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR | Zbl

[11] N. A. Vavilov, E. Ya. Perelman, “Polivektornye predstavleniya $\mathrm{GL}_n$”, Zap. nauchn. semin. POMI, 338, 2006, 69–97 | MR | Zbl

[12] A. A. Suslin, “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1777), 235–252 | MR | Zbl