@article{ZNSL_2018_470_a4,
author = {E. A. Egorchenkova and N. L. Gordeev},
title = {Products of commutators on a~general linear group over a~division algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--104},
year = {2018},
volume = {470},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/}
}
E. A. Egorchenkova; N. L. Gordeev. Products of commutators on a general linear group over a division algebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 88-104. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/
[1] E. Artin, Geometricheskaya algebra, “Nauka”, Glavnaya red. fiz.-mat. lit., Moskva, 1969
[2] A. Borel, Linear Algebraic Groups, Graduate Texts in Math., 2nd ed., Springer-Verlag, 1991 | DOI | MR | Zbl
[3] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math., 29 (1983), 151–164 ; reproduced in ØE uvres – Collected Papers, IV, Springer-Verlag, Berlin–Heidelberg, 2001, 41–54 | MR | Zbl
[4] V. Chernousov, E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229:1 (2000), 314–332 | DOI | MR | Zbl
[5] A. Elkasapy, A. Thom, “About Gotô's method showing surjectivity of word maps”, Indiana Univ. Math. J., 63 (2014), 1553–1565 | DOI | MR | Zbl
[6] E. W. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl
[7] E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part in Chevalley groups. III. Finite twisted groups”, Commun. Algebra, 24:14 (1996), 4447–4475 | DOI | MR | Zbl
[8] N. Gordeev, “Sums of orbits of algebraic groups. I”, J. Algebra, 295:1 (2006), 62–80 | DOI | MR | Zbl
[9] N. L. Gordeev, B. E. Kunyavskii, E. B. Plotkin, “Verbalnye otobrazheniya i verbalnye otobrazheniya s konstantami prostykh algebraicheskikh grupp”, Doklady RAN, 471:2 (2016), 136–138 | DOI | Zbl
[10] N. Gordeev, B. Kunyavskii, E. Plotkin, “Word maps, word maps with constants and representation varieties of one-relator groups”, J. Algebra, 500 (2018), 390–424 | DOI | MR | Zbl
[11] N. Gordeev, B. Kunyavskii, E. Plotkin, Word maps on perfect algebraic groups, arXiv: 1801.00381 | MR
[12] N. Gordeev, J. Saxl, “Products of conjugacy classes in Chevalley groups over local rings”, Algebra i analiz, 17:2 (2005), 96–107 | MR | Zbl
[13] A. J. Hahn, O. T. O'Meara, The Classical groups and K-theory, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl
[14] C. Y. Hui, M. Larsen, A. Shalev, “The Waring problem for Lie groups and Chevalley groups”, Israel J. Math., 210 (2015), 81–100 | DOI | MR | Zbl
[15] J. Morita, E. Plotkin, “Prescribed Gauss decompositions for Kac-Moody groups over fields”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 153–163 | MR | Zbl
[16] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, Glavnaya red. fiz.-mat. lit., Moskva, 1991
[17] T. A. Springer, Linear algberaic groups., 2nd edition, Birkhäuser, Boston–Basel–Berlin, 1998 | MR
[18] Sheng-Kui Ye, Sheng Chen, Chun-Sheng Wang, “Gauss decomposition with prescribed semisimple part in quadratic groups”, Commun. Algebra, 37 (2009), 3054–3063 | DOI | MR | Zbl