Products of commutators on a general linear group over a division algebra
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 88-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the word maps $\widetilde w\colon\mathrm{GL}_m(D)^{2k}\to\mathrm{GL}_n(D)$ and $\widetilde w\colon D^{*2k}\to D^*$ for a word $w=\prod_{i=1}^k[x_i,y_i]$, where $D$ is the division algebra over a field $K$. If $\widetilde w(D^{*2k})=[D^*,D^*]$ we prove that $\widetilde w(\mathrm{GL}_n(D))\supset E_n(D)\setminus Z(E_n(D))$, where $E_n(D)$ is the subgroup of $\mathrm{GL}_n(D)$ which is generated by transvections and $Z(E_n(D))$ is its center. If, in addition, $n>2$, we prove $\widetilde w(E_n(D))\supset E_n(D)\setminus Z(E_n(D))$. The proof of the result is based on an analogue of the “Gauss decomposition with prescribed semisimple part” (see, J. Algebra 229 (2000), no. 1, 314–332) of the group $\mathrm{GL}_n(D)$ which is also is considered in this paper.
@article{ZNSL_2018_470_a4,
     author = {E. A. Egorchenkova and N. L. Gordeev},
     title = {Products of commutators on a~general linear group over a~division algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--104},
     year = {2018},
     volume = {470},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/}
}
TY  - JOUR
AU  - E. A. Egorchenkova
AU  - N. L. Gordeev
TI  - Products of commutators on a general linear group over a division algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 88
EP  - 104
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/
LA  - ru
ID  - ZNSL_2018_470_a4
ER  - 
%0 Journal Article
%A E. A. Egorchenkova
%A N. L. Gordeev
%T Products of commutators on a general linear group over a division algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 88-104
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/
%G ru
%F ZNSL_2018_470_a4
E. A. Egorchenkova; N. L. Gordeev. Products of commutators on a general linear group over a division algebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 88-104. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a4/

[1] E. Artin, Geometricheskaya algebra, “Nauka”, Glavnaya red. fiz.-mat. lit., Moskva, 1969

[2] A. Borel, Linear Algebraic Groups, Graduate Texts in Math., 2nd ed., Springer-Verlag, 1991 | DOI | MR | Zbl

[3] A. Borel, “On free subgroups of semisimple groups”, Enseign. Math., 29 (1983), 151–164 ; reproduced in ØE uvres – Collected Papers, IV, Springer-Verlag, Berlin–Heidelberg, 2001, 41–54 | MR | Zbl

[4] V. Chernousov, E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part: short proof”, J. Algebra, 229:1 (2000), 314–332 | DOI | MR | Zbl

[5] A. Elkasapy, A. Thom, “About Gotô's method showing surjectivity of word maps”, Indiana Univ. Math. J., 63 (2014), 1553–1565 | DOI | MR | Zbl

[6] E. W. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl

[7] E. W. Ellers, N. Gordeev, “Gauss decomposition with prescribed semisimple part in Chevalley groups. III. Finite twisted groups”, Commun. Algebra, 24:14 (1996), 4447–4475 | DOI | MR | Zbl

[8] N. Gordeev, “Sums of orbits of algebraic groups. I”, J. Algebra, 295:1 (2006), 62–80 | DOI | MR | Zbl

[9] N. L. Gordeev, B. E. Kunyavskii, E. B. Plotkin, “Verbalnye otobrazheniya i verbalnye otobrazheniya s konstantami prostykh algebraicheskikh grupp”, Doklady RAN, 471:2 (2016), 136–138 | DOI | Zbl

[10] N. Gordeev, B. Kunyavskii, E. Plotkin, “Word maps, word maps with constants and representation varieties of one-relator groups”, J. Algebra, 500 (2018), 390–424 | DOI | MR | Zbl

[11] N. Gordeev, B. Kunyavskii, E. Plotkin, Word maps on perfect algebraic groups, arXiv: 1801.00381 | MR

[12] N. Gordeev, J. Saxl, “Products of conjugacy classes in Chevalley groups over local rings”, Algebra i analiz, 17:2 (2005), 96–107 | MR | Zbl

[13] A. J. Hahn, O. T. O'Meara, The Classical groups and K-theory, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl

[14] C. Y. Hui, M. Larsen, A. Shalev, “The Waring problem for Lie groups and Chevalley groups”, Israel J. Math., 210 (2015), 81–100 | DOI | MR | Zbl

[15] J. Morita, E. Plotkin, “Prescribed Gauss decompositions for Kac-Moody groups over fields”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 153–163 | MR | Zbl

[16] V. P. Platonov, A. S. Rapinchuk, Algebraicheskie gruppy i teoriya chisel, Nauka, Glavnaya red. fiz.-mat. lit., Moskva, 1991

[17] T. A. Springer, Linear algberaic groups., 2nd edition, Birkhäuser, Boston–Basel–Berlin, 1998 | MR

[18] Sheng-Kui Ye, Sheng Chen, Chun-Sheng Wang, “Gauss decomposition with prescribed semisimple part in quadratic groups”, Commun. Algebra, 37 (2009), 3054–3063 | DOI | MR | Zbl