Separability of Schur rings over an abelian group of order~$4p$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 179-193

Voir la notice de l'article provenant de la source Math-Net.Ru

An $S$-ring (a Schur ring) is said to be separable with respect to a class of groups $\mathcal K$ if every its algebraic isomorphism to an $S$-ring over a group from $\mathcal K$ is induced by a combinatorial isomorphism. We prove that every Schur ring over an abelian group $G$ of order $4p$, where $p$ is a prime, is separable with respect to the class of abelian groups. This implies that the Weisfeiler–Leman dimension of the class of Cayley graphs over $G$ is at most 2.
@article{ZNSL_2018_470_a11,
     author = {G. K. Ryabov},
     title = {Separability of {Schur} rings over an abelian group of order~$4p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {470},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a11/}
}
TY  - JOUR
AU  - G. K. Ryabov
TI  - Separability of Schur rings over an abelian group of order~$4p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 179
EP  - 193
VL  - 470
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a11/
LA  - ru
ID  - ZNSL_2018_470_a11
ER  - 
%0 Journal Article
%A G. K. Ryabov
%T Separability of Schur rings over an abelian group of order~$4p$
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 179-193
%V 470
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a11/
%G ru
%F ZNSL_2018_470_a11
G. K. Ryabov. Separability of Schur rings over an abelian group of order~$4p$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 179-193. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a11/