New supercharacter theory for Sylow subgroups in orthogonal and symplectic groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 162-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using new approach the supercharacter theory is constructed for the Sylow subgroups in orthogonal and symplectic groups.
@article{ZNSL_2018_470_a10,
     author = {A. N. Panov},
     title = {New supercharacter theory for {Sylow} subgroups in orthogonal and symplectic groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--178},
     year = {2018},
     volume = {470},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - New supercharacter theory for Sylow subgroups in orthogonal and symplectic groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 162
EP  - 178
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/
LA  - ru
ID  - ZNSL_2018_470_a10
ER  - 
%0 Journal Article
%A A. N. Panov
%T New supercharacter theory for Sylow subgroups in orthogonal and symplectic groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 162-178
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/
%G ru
%F ZNSL_2018_470_a10
A. N. Panov. New supercharacter theory for Sylow subgroups in orthogonal and symplectic groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 162-178. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/

[1] P. Diaconis, I. M. Isaacs, “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360 (2008), 2359–2392 | DOI | MR | Zbl

[2] C. A. M. André, “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176 (1995), 959–1000 | DOI | MR | Zbl

[3] C. A. M. André, “Basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl

[4] C. A. M. André, “Hecke algebra for the basic representations of the unitriangular group”, Proc. Amer. Math. Soc., 132:4 (2003), 987–996 | DOI | MR

[5] C. A. M. André, A. M. Neto, “Supercharacters of the finite the Sylow subgroup of the finite symplectic and orthogonal groups”, Pacific Math. Journal, 239 (2009), 201–230 | DOI | MR | Zbl

[6] C. A. M. André, A. M. Neto, “A supercharacter theory for the Sylow $p$-subgroups of the finite symplectic and orthogonal groups”, J. Algebra, 322 (2009), 1273–1294 | DOI | MR | Zbl

[7] C. A. M. André, J. P. Freitas, A. M. Neto, “A supercharacter theory for involutive algebra groups”, J. Algebra, 430 (2015), 159–190 | DOI | MR | Zbl

[8] S. Andrews, “Supercharacters of unipotent groups defined by involutions”, J. Algebra, 425 (2015), 1–30 | DOI | MR | Zbl

[9] A. N. Panov, “Teoriya superkharakterov dlya grupp obratimykh elementov privedennykh algebr”, Algebra i analiz, 27:6 (2015), 242–259 | MR

[10] A. N. Panov, “Superkharaktery unipotentnykh i razreshimykh grupp”, Itogi nauki i tekhn. Ser. Sovrem. mat. pril. Tem. Obzory, 136, 2017, 31–55