@article{ZNSL_2018_470_a10,
author = {A. N. Panov},
title = {New supercharacter theory for {Sylow} subgroups in orthogonal and symplectic groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--178},
year = {2018},
volume = {470},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/}
}
A. N. Panov. New supercharacter theory for Sylow subgroups in orthogonal and symplectic groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 162-178. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a10/
[1] P. Diaconis, I. M. Isaacs, “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360 (2008), 2359–2392 | DOI | MR | Zbl
[2] C. A. M. André, “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176 (1995), 959–1000 | DOI | MR | Zbl
[3] C. A. M. André, “Basic character table of the unitriangular group”, J. Algebra, 241 (2001), 437–471 | DOI | MR | Zbl
[4] C. A. M. André, “Hecke algebra for the basic representations of the unitriangular group”, Proc. Amer. Math. Soc., 132:4 (2003), 987–996 | DOI | MR
[5] C. A. M. André, A. M. Neto, “Supercharacters of the finite the Sylow subgroup of the finite symplectic and orthogonal groups”, Pacific Math. Journal, 239 (2009), 201–230 | DOI | MR | Zbl
[6] C. A. M. André, A. M. Neto, “A supercharacter theory for the Sylow $p$-subgroups of the finite symplectic and orthogonal groups”, J. Algebra, 322 (2009), 1273–1294 | DOI | MR | Zbl
[7] C. A. M. André, J. P. Freitas, A. M. Neto, “A supercharacter theory for involutive algebra groups”, J. Algebra, 430 (2015), 159–190 | DOI | MR | Zbl
[8] S. Andrews, “Supercharacters of unipotent groups defined by involutions”, J. Algebra, 425 (2015), 1–30 | DOI | MR | Zbl
[9] A. N. Panov, “Teoriya superkharakterov dlya grupp obratimykh elementov privedennykh algebr”, Algebra i analiz, 27:6 (2015), 242–259 | MR
[10] A. N. Panov, “Superkharaktery unipotentnykh i razreshimykh grupp”, Itogi nauki i tekhn. Ser. Sovrem. mat. pril. Tem. Obzory, 136, 2017, 31–55