Towards the reverse decomposition of unipotents
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 21-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Decomposition of unipotents gives short polynomial expressions of the conjugates of elementary generators as products of elementaries. It turns out that with some minor twist the decomposition of unipotents can be read backwards, to give very short polynomial expressions of elementary generators themselves in terms of elementary conjugates of an arbitrary matrix and its inverse. For absolute elementary subgroups of classical groups this was recently observed by Raimund Preusser. I discuss various generalisations of these results for exceptional groups, specifically those of types $\mathrm E_6$ and $\mathrm E_7$, and also mention further possible generalisations and applications.
@article{ZNSL_2018_470_a1,
     author = {N. A. Vavilov},
     title = {Towards the reverse decomposition of unipotents},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--37},
     year = {2018},
     volume = {470},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Towards the reverse decomposition of unipotents
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 21
EP  - 37
VL  - 470
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/
LA  - en
ID  - ZNSL_2018_470_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Towards the reverse decomposition of unipotents
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 21-37
%V 470
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/
%G en
%F ZNSL_2018_470_a1
N. A. Vavilov. Towards the reverse decomposition of unipotents. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 21-37. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/

[1] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory (Sendai, 1988), Uchida Rokakuho Publ. Comp., Tokyo, 1989, 1–23 | MR

[2] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[3] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[4] M. M. Atamanova, A. Yu. Luzgarev, “Cubic forms on adjoint representations of exceptional groups”, J. Math. Sci., 222:4 (2017), 370–379 | DOI | MR | Zbl

[5] A. Bak, The stable structure of quadratic modules, Ph. D. Thesis, Columbia University, 1969

[6] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[7] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR

[8] H. Bass, “Unitary algebraic K-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl

[9] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR

[10] N. Bourbaki, Groupes et Algébres de Lie, Chapitres 4–6, Hermann, Paris, 1968 | MR

[11] J. L. Brenner, “The linear homogeneous group. III”, Ann. Math., 71 (1960), 210–223 | DOI | MR | Zbl

[12] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic group”, J. reine angew. Math., 427:1 (1992), 51–105 | MR | Zbl

[13] D. L. Costa, G. E. Keller, “On the normal subgroups of $G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[14] I. Z. Golubchik, “On the general linear group over an associative ring”, Uspehi Mat. Nauk, 28:3 (1973), 179–180 | MR | Zbl

[15] I. Z. Golubchik, “On the normal subgroups of orthogonal group over an associative ring with involution”, Uspehi Mat. Nauk, 30:6 (1975), 165 | Zbl

[16] I. Z. Golubchik, The normal subgroups of linear and unitary groups over rings, Ph. D. Thesis, Moscow State University, 1981

[17] I. Z. Golubchik, “On the normal subgroups of the linear and unitary groups over associative rings”, Spaces over Algebras and Some Problems in the Theory of Nets, Ufa, 1985, 122–142 | MR

[18] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR

[19] A. Yu. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, 4 Jan 2014, arXiv: 1401.0849v1[math.AG]

[20] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-Theory, 5:3 (2010), 603–618 | DOI | MR | Zbl

[21] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[22] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[23] V. I. Kopeiko, “Stabilization of symplectic groups over a ring of polynomials”, Math. USSR Sb., 34:5 (1978), 655–669 | DOI | MR | Zbl

[24] V. A. Petrov, “Decomposition of transvections: An algebro-geometric approach”, St. Petersburg J. Math., 28:1 (2017), 109–114 | DOI | MR | Zbl

[25] R. Preusser, “Structure of hyperbolic unitary groups. II. Classification of $E$-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl

[26] R. Preusser, “Sandwich classification for $\mathrm{GL}_n(R)$, $O_{2n}(R)$ and $U_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21:1 (2018), 21–44 | DOI | MR | Zbl

[27] R. Preusser, “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl

[28] A. Stavrova, A. Stepanov, Normal structure of isotropic reductive groups over rings, 26 Jan 2018, arXiv: 1801.08748v1[math.GR]

[29] A. Stepanov, Stability conditions in the theory of linear groups over rings, Ph. D. Thesis, Leningrad State Univ., 1987, 112 pp.

[30] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[31] A. V. Stepanov, “A new look at the decomposition of unipotents and the normal structure of Chevalley groups”, St. Petersburg J. Math., 28:3 (2017), 411–419 | DOI | MR | Zbl

[32] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[33] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[34] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and the orthogonal group over polynomial rings”, J. Soviet Math., 20:6 (1982), 2665–2691 | DOI | MR | Zbl

[35] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55 (1986), 693–710 | DOI | MR | Zbl

[36] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR

[37] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[38] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[39] L. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105 (1995), 93–106 | DOI | MR

[40] N. A. Vavilov, Subgroups of split classical groups, Habilitationsschrift, Leningrad State Univ., 1987, 334 pp. | Zbl

[41] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[42] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[43] N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl

[44] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. Fundamental lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942 | DOI | MR | Zbl

[45] N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, J. Math. Sci., 219:3 (2016), 355–369 | DOI | MR | Zbl

[46] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl

[47] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci., 140:5 (2007), 626–645 | DOI | MR | Zbl

[48] N. A. Vavilov, A. Yu. Luzgarev, “Normalizer of the Chevalley group of type $\mathrm E_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR | Zbl

[49] N. A. Vavilov, A. Yu. Luzgarev, “Normalizer of the Chevalley group of type $\mathrm E_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921 | DOI | MR

[50] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm F_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551 | DOI | MR | Zbl

[51] N. A. Vavilov, E. B. Plotkin, “Net subgroups of Chevalley groups”, J. Sov. Math., 19:1 (1982), 1000–1006 | DOI | MR | Zbl

[52] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–113 | DOI | MR | Zbl

[53] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR

[54] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[55] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Camb. Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl