@article{ZNSL_2018_470_a1,
author = {N. A. Vavilov},
title = {Towards the reverse decomposition of unipotents},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--37},
year = {2018},
volume = {470},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/}
}
N. A. Vavilov. Towards the reverse decomposition of unipotents. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 33, Tome 470 (2018), pp. 21-37. http://geodesic.mathdoc.fr/item/ZNSL_2018_470_a1/
[1] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory (Sendai, 1988), Uchida Rokakuho Publ. Comp., Tokyo, 1989, 1–23 | MR
[2] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl
[3] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl
[4] M. M. Atamanova, A. Yu. Luzgarev, “Cubic forms on adjoint representations of exceptional groups”, J. Math. Sci., 222:4 (2017), 370–379 | DOI | MR | Zbl
[5] A. Bak, The stable structure of quadratic modules, Ph. D. Thesis, Columbia University, 1969
[6] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[7] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR
[8] H. Bass, “Unitary algebraic K-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl
[9] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Inst. Math., 3 (1985), 27–46 | MR
[10] N. Bourbaki, Groupes et Algébres de Lie, Chapitres 4–6, Hermann, Paris, 1968 | MR
[11] J. L. Brenner, “The linear homogeneous group. III”, Ann. Math., 71 (1960), 210–223 | DOI | MR | Zbl
[12] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic group”, J. reine angew. Math., 427:1 (1992), 51–105 | MR | Zbl
[13] D. L. Costa, G. E. Keller, “On the normal subgroups of $G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl
[14] I. Z. Golubchik, “On the general linear group over an associative ring”, Uspehi Mat. Nauk, 28:3 (1973), 179–180 | MR | Zbl
[15] I. Z. Golubchik, “On the normal subgroups of orthogonal group over an associative ring with involution”, Uspehi Mat. Nauk, 30:6 (1975), 165 | Zbl
[16] I. Z. Golubchik, The normal subgroups of linear and unitary groups over rings, Ph. D. Thesis, Moscow State University, 1981
[17] I. Z. Golubchik, “On the normal subgroups of the linear and unitary groups over associative rings”, Spaces over Algebras and Some Problems in the Theory of Nets, Ufa, 1985, 122–142 | MR
[18] A. J. Hahn, O. T. O'Meara, The classical groups and $\mathrm K$-theory, Springer, Berlin et al., 1989 | MR
[19] A. Yu. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, 4 Jan 2014, arXiv: 1401.0849v1[math.AG]
[20] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-Theory, 5:3 (2010), 603–618 | DOI | MR | Zbl
[21] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl
[22] R. Hazrat, N. Vavilov, “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[23] V. I. Kopeiko, “Stabilization of symplectic groups over a ring of polynomials”, Math. USSR Sb., 34:5 (1978), 655–669 | DOI | MR | Zbl
[24] V. A. Petrov, “Decomposition of transvections: An algebro-geometric approach”, St. Petersburg J. Math., 28:1 (2017), 109–114 | DOI | MR | Zbl
[25] R. Preusser, “Structure of hyperbolic unitary groups. II. Classification of $E$-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl
[26] R. Preusser, “Sandwich classification for $\mathrm{GL}_n(R)$, $O_{2n}(R)$ and $U_{2n}(R,\Lambda)$ revisited”, J. Group Theory, 21:1 (2018), 21–44 | DOI | MR | Zbl
[27] R. Preusser, “Sandwich classification for $O_{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl
[28] A. Stavrova, A. Stepanov, Normal structure of isotropic reductive groups over rings, 26 Jan 2018, arXiv: 1801.08748v1[math.GR]
[29] A. Stepanov, Stability conditions in the theory of linear groups over rings, Ph. D. Thesis, Leningrad State Univ., 1987, 112 pp.
[30] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[31] A. V. Stepanov, “A new look at the decomposition of unipotents and the normal structure of Chevalley groups”, St. Petersburg J. Math., 28:3 (2017), 411–419 | DOI | MR | Zbl
[32] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl
[33] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl
[34] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and the orthogonal group over polynomial rings”, J. Soviet Math., 20:6 (1982), 2665–2691 | DOI | MR | Zbl
[35] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55 (1986), 693–710 | DOI | MR | Zbl
[36] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Algebraic $\mathrm K$-Theory (Evanston, 1980), Lecture Notes in Math., 854, Springer, Berlin et al., 1981, 454–465 | MR
[37] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR
[38] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl
[39] L. Vaserstein, Hong You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105 (1995), 93–106 | DOI | MR
[40] N. A. Vavilov, Subgroups of split classical groups, Habilitationsschrift, Leningrad State Univ., 1987, 334 pp. | Zbl
[41] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[42] N. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl
[43] N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl
[44] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. Fundamental lemma”, St. Petersburg Math. J., 23:6 (2012), 921–942 | DOI | MR | Zbl
[45] N. A. Vavilov, “Decomposition of unipotents for $\mathrm E_6$ and $\mathrm E_7$: 25 years after”, J. Math. Sci., 219:3 (2016), 355–369 | DOI | MR | Zbl
[46] N. A. Vavilov, M. R. Gavrilovich, “$\mathrm A_2$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl
[47] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci., 140:5 (2007), 626–645 | DOI | MR | Zbl
[48] N. A. Vavilov, A. Yu. Luzgarev, “Normalizer of the Chevalley group of type $\mathrm E_6$”, St. Petersburg Math. J., 19:5 (2008), 699–718 | DOI | MR | Zbl
[49] N. A. Vavilov, A. Yu. Luzgarev, “Normalizer of the Chevalley group of type $\mathrm E_7$”, St. Petersburg Math. J., 27:6 (2016), 899–921 | DOI | MR
[50] N. A. Vavilov, S. I. Nikolenko, “$\mathrm A_2$-proof of structure theorems for the Chevalley group of type $\mathrm F_4$”, St. Petersburg Math. J., 20:4 (2009), 527–551 | DOI | MR | Zbl
[51] N. A. Vavilov, E. B. Plotkin, “Net subgroups of Chevalley groups”, J. Sov. Math., 19:1 (1982), 1000–1006 | DOI | MR | Zbl
[52] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–113 | DOI | MR | Zbl
[53] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR
[54] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl
[55] J. S. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Camb. Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl