Number of non-zero cubic sums
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 160-174
Voir la notice de l'article provenant de la source Math-Net.Ru
The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural $q$, the explicit formulas for the number of non-zero sums among $S_q(a,0),\dots,S_q(a,q-1)$ are found.
@article{ZNSL_2018_469_a6,
author = {N. D. Filonov},
title = {Number of non-zero cubic sums},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {160--174},
publisher = {mathdoc},
volume = {469},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/}
}
N. D. Filonov. Number of non-zero cubic sums. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 160-174. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/