Number of non-zero cubic sums
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 160-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The exponential sums $S_q(a,m)=\sum_{l=1}^q\exp(2\pi i(al^3+ml)q^{-1})$ are considered. For every natural $q$, the explicit formulas for the number of non-zero sums among $S_q(a,0),\dots,S_q(a,q-1)$ are found.
@article{ZNSL_2018_469_a6,
     author = {N. D. Filonov},
     title = {Number of non-zero cubic sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {160--174},
     publisher = {mathdoc},
     volume = {469},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/}
}
TY  - JOUR
AU  - N. D. Filonov
TI  - Number of non-zero cubic sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 160
EP  - 174
VL  - 469
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/
LA  - ru
ID  - ZNSL_2018_469_a6
ER  - 
%0 Journal Article
%A N. D. Filonov
%T Number of non-zero cubic sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 160-174
%V 469
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/
%G ru
%F ZNSL_2018_469_a6
N. D. Filonov. Number of non-zero cubic sums. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 160-174. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a6/