Kummer's tower and big zeta-functions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 151-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The statement of the problem to construct a big zeta function is discussed. This problem is related to an arithmetic Hurwitz formula. Two pretenders to play the role of the big zeta are suggested. Representations and ramification structures, related to Kummer's tower, are studied.
@article{ZNSL_2018_469_a5,
     author = {A. L. Smirnov},
     title = {Kummer's tower and big zeta-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--159},
     year = {2018},
     volume = {469},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - Kummer's tower and big zeta-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 151
EP  - 159
VL  - 469
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/
LA  - ru
ID  - ZNSL_2018_469_a5
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T Kummer's tower and big zeta-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 151-159
%V 469
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/
%G ru
%F ZNSL_2018_469_a5
A. L. Smirnov. Kummer's tower and big zeta-functions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 151-159. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/

[1] A. L. Smirnov, “Neravenstva Gurvitsa dlya chislovykh polei”, Algebra i analiz, 4:2 (1992), 186–209 | MR | Zbl

[2] H. Hasse, “Über die Artinische Vermutung und verwandte Dichtefragen”, Ann. Acad. Sci. Fenn. Ser. A J. Math-Phys., 116 (1952), 3–17 | MR

[3] D. Shanks, Solved and Unsolved Problems in Number Theory, Chelsia Publishing Company, N.Y., 1978 | MR | Zbl

[4] M. A. Tsfasman, S. G. Vladut, “Infinite global fields and the generalized Brauer–Siegel theorem”, Moscow Math. J., 2:2 (2002), 329–402 | DOI | MR | Zbl

[5] Dzh. Kassels, A. Frelikh, Algebraicheskaya teoriya chisel, Mir, 1969

[6] C. Hooley, “On Artin's conjecture”, J. Für die Reine und Angew. Math., 225 (1967), 209–220 | MR | Zbl