Kummer's tower and big zeta-functions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 151-159
Cet article a éte moissonné depuis la source Math-Net.Ru
The statement of the problem to construct a big zeta function is discussed. This problem is related to an arithmetic Hurwitz formula. Two pretenders to play the role of the big zeta are suggested. Representations and ramification structures, related to Kummer's tower, are studied.
@article{ZNSL_2018_469_a5,
author = {A. L. Smirnov},
title = {Kummer's tower and big zeta-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--159},
year = {2018},
volume = {469},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/}
}
A. L. Smirnov. Kummer's tower and big zeta-functions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 151-159. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a5/
[1] A. L. Smirnov, “Neravenstva Gurvitsa dlya chislovykh polei”, Algebra i analiz, 4:2 (1992), 186–209 | MR | Zbl
[2] H. Hasse, “Über die Artinische Vermutung und verwandte Dichtefragen”, Ann. Acad. Sci. Fenn. Ser. A J. Math-Phys., 116 (1952), 3–17 | MR
[3] D. Shanks, Solved and Unsolved Problems in Number Theory, Chelsia Publishing Company, N.Y., 1978 | MR | Zbl
[4] M. A. Tsfasman, S. G. Vladut, “Infinite global fields and the generalized Brauer–Siegel theorem”, Moscow Math. J., 2:2 (2002), 329–402 | DOI | MR | Zbl
[5] Dzh. Kassels, A. Frelikh, Algebraicheskaya teoriya chisel, Mir, 1969
[6] C. Hooley, “On Artin's conjecture”, J. Für die Reine und Angew. Math., 225 (1967), 209–220 | MR | Zbl