@article{ZNSL_2018_469_a3,
author = {V. G. Zhuravlev},
title = {Unimodular invariance of karyon decompositions of algebraic numbers in multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--137},
year = {2018},
volume = {469},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a3/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Unimodular invariance of karyon decompositions of algebraic numbers in multidimensional continued fractions JO - Zapiski Nauchnykh Seminarov POMI PY - 2018 SP - 96 EP - 137 VL - 469 UR - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a3/ LA - ru ID - ZNSL_2018_469_a3 ER -
V. G. Zhuravlev. Unimodular invariance of karyon decompositions of algebraic numbers in multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 96-137. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a3/
[1] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92 | MR
[2] A. Ya. Khinchin, Tsepnye drobi, chetvertoe izd., Nauka, M., 1978
[3] V. G. Zhuravlev, “Periodicheskie yadernye razlozheniya edinits algebraicheskikh polei v tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 84–129 | MR
[4] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98 | MR
[5] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 440, 2015, 99–122 | MR
[6] V. G. Zhuravlev, “Periodicheskie yadernye razlozheniya kubicheskikh irratsionalnostei v tsepnye drobi”, Sovr. probl. matem., 23, MIAN, M., 2016, 43–68 | DOI
[7] Z. Coelho, A. Lopes, L. F. Da Rocha, “Absolutely Continuous Invariant Measures for a Class of Affine Interval Exchange Maps”, Proccedings of The American Mathematical Society, 123:11 (1995), 3533–3542 | DOI | MR | Zbl
[8] V. G. Zhuravlev, A. V. Shutov, “Derivaties of circle rotations and similarity of orbits”, Max-Planck-Institut für Mathematik Preprint Series, 62 (2004), 1–11 | MR
[9] M. Furukado, Sh. Ito, A. Saito, J. Tamura, Sh. Yasutomi, “A new multidimensional slow continued fraction algorithm and stepped surface”, Experemental Mathematics, 23:4 (2014), 390–410 | DOI | MR | Zbl
[10] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl
[11] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145
[12] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR
[13] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952
[14] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl