The karyon algorithm for decomposition into multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 32-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we propose a universal karyon algorithm, applicable to any set of real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$, which is a modification of the simplex-karyon algorithm. The main difference is an infinite sequence $\mathbf T=\mathbf T_0,\mathbf T_1,\dots,\mathbf T_n,\dots$ of $d$-dimensional parallelohedra $\mathbf T_n$ instead of the simplex sequence. Each parallelohedron $\mathbf T_n$ is obtained from the previous $\mathbf T_{n-1}$ by means of the differentiation $\mathbf T_n=\mathbf T^{\sigma_n}_{n-1}$. Parallelohedra $\mathbf T_n$ represent itself karyons of certain induced toric tilings. A certain algorithm ($\varrho$-strategy) of the choice of infinite sequences $\sigma=\{\sigma_1,\sigma_2,\dots,\sigma_n,\dots\}$ of derivations $\sigma_n$ is specified. This algorithm provides the convergence $\varrho(\mathbf T_n)\to0$ if $n\to+\infty$, where $\varrho(\mathbf T_n)$ denotes the radius of the parallelohedron $\mathbf T_n$ in the metric $\varrho$ chosen as an objective function. It is proved that the parallelohedra $\mathbf T_n$ have the minimum property, i.e. the karyon approximation algorithm is the best with respect to karyon $\mathbf T_n$-norms. Also we get an estimate for the approximation rate of real numbers $\alpha=(\alpha_1,\dots,\alpha_d)$ by multidimensional continued fractions.
@article{ZNSL_2018_469_a1,
     author = {V. G. Zhuravlev},
     title = {The karyon algorithm for decomposition into multidimensional continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--63},
     year = {2018},
     volume = {469},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - The karyon algorithm for decomposition into multidimensional continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 32
EP  - 63
VL  - 469
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/
LA  - ru
ID  - ZNSL_2018_469_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T The karyon algorithm for decomposition into multidimensional continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 32-63
%V 469
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/
%G ru
%F ZNSL_2018_469_a1
V. G. Zhuravlev. The karyon algorithm for decomposition into multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 32-63. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/

[1] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Tr. MIAN, 299, 2017, 283–303 | DOI | Zbl

[2] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98 | MR

[3] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92 | MR

[4] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki, 18–23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR

[5] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl

[6] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373-401 | DOI | MR | Zbl

[7] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR

[8] V. Berthe, S. Labbe, “Factor complexity of $S$-adic words generated by the arnoux-rauzy-poincare algorithm”, Advances in Applied Mathematics, 63 (2015), 90–130 | DOI | MR | Zbl

[9] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814 | MR

[10] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (October 12th, 2015), LIAFA, Paris, October 2015

[11] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195 | MR

[12] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl

[13] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145

[14] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl

[15] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR

[16] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR

[17] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[18] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | MR | Zbl