@article{ZNSL_2018_469_a1,
author = {V. G. Zhuravlev},
title = {The karyon algorithm for decomposition into multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--63},
year = {2018},
volume = {469},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/}
}
V. G. Zhuravlev. The karyon algorithm for decomposition into multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 32-63. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a1/
[1] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Tr. MIAN, 299, 2017, 283–303 | DOI | Zbl
[2] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98 | MR
[3] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii tora i mnogomernye priblizheniya algebraicheskikh chisel”, Zap. nauchn. semin. POMI, 445, 2016, 33–92 | MR
[4] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki, 18–23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR
[5] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl
[6] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373-401 | DOI | MR | Zbl
[7] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR
[8] V. Berthe, S. Labbe, “Factor complexity of $S$-adic words generated by the arnoux-rauzy-poincare algorithm”, Advances in Applied Mathematics, 63 (2015), 90–130 | DOI | MR | Zbl
[9] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, August 2015, arXiv: 1508.07814 | MR
[10] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (October 12th, 2015), LIAFA, Paris, October 2015
[11] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195 | MR
[12] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl
[13] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145
[14] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl
[15] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953 | MR
[16] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952 | MR
[17] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[18] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, eds. E. Manstavicius et al., TEV, Vilnius, 2007, 240–254 | MR | Zbl