Eisenstein formula and Dirihlet correspondence
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 7-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain an exact formula for the number of integral points in the system of ellipses related according to Dirichlet with an arbitrary imaginary quadratic field. The relation of this formula to arithmetic Riemann–Roch theorems is discussed. So far it has been known only nine similar formulas. They correspond to the imaginary quadratic fields with the trivial class group.
@article{ZNSL_2018_469_a0,
     author = {D. A. Artyushin and A. L. Smirnov},
     title = {Eisenstein formula and {Dirihlet} correspondence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--31},
     year = {2018},
     volume = {469},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/}
}
TY  - JOUR
AU  - D. A. Artyushin
AU  - A. L. Smirnov
TI  - Eisenstein formula and Dirihlet correspondence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 31
VL  - 469
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/
LA  - ru
ID  - ZNSL_2018_469_a0
ER  - 
%0 Journal Article
%A D. A. Artyushin
%A A. L. Smirnov
%T Eisenstein formula and Dirihlet correspondence
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-31
%V 469
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/
%G ru
%F ZNSL_2018_469_a0
D. A. Artyushin; A. L. Smirnov. Eisenstein formula and Dirihlet correspondence. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 7-31. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/

[1] G. Eisenstein, “Geometrischer Beweis des Fundamentaltheorems für die quadratischen Reste”, J. Für die Reine und Angew. Math., 28 (1844), 246–248 | DOI | MR | Zbl

[2] E. Ehrhart, “Sur une problème de géométrie diophantine linéaire”, J. Für die Reine und Angew. Math., 226 (1967), 1–29 | MR | Zbl

[3] N. V. Bugaev, “Chislovye tozhdestva, nakhodyaschiesya v svyazi so svoistvami simvola $E$”, Matem. sb., 1:1 (1866), 1–162

[4] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, 1981

[5] N. Durov, New Approach to Arakelov Geometry, 2007, arXiv: 0704.2030 | Zbl

[6] M. J. Shai Haran, “Non-additive geometry”, Comp. Math., 143 (2007), 618–688 | DOI | MR | Zbl

[7] L. Szpiro, “La conjectura de Mordell (d'après G. Faltings)”, Seminaire Bourbaki, 36-e année, No. 619, 1983/1984, 1–21 | MR

[8] A. L. Smirnov, “On exact formulas for the number of integral points”, Zap. nauchn. semin. POMI, 413, 2013, 173–182 | MR

[9] T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, 1976 | MR | Zbl

[10] N. V. Bugaev, “Razlichnye voprosy ischisleniya $E(x)$”, Matem. sb., 23:4 (1902), 605–725 | Zbl

[11] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, Moskva, 1985

[12] D. Husemoller, J. Milnor, Symmetric bilinear forms, Springer Verlag, 1973 | MR | Zbl

[13] R. Khartskhorn, Algebraicheskaya geometriya, Mir, 1981

[14] Dzh. Kassels, A. Frelikh, Algebraicheskaya teoriya chisel, Mir, 1969

[15] A. Altman, S. Kleiman, Introduction to Grothendieck Duality Theory, Lect. Notes Math., 146, 1970 | DOI | MR | Zbl

[16] R. Hartshorne, Residues and Duality, Lecture Notes in Math., 20, 1966 | DOI | MR | Zbl

[17] Yu. I. Manin, “Novye razmernosti v geometrii”, UMN, 39:6(240) (1984), 47–73 | MR | Zbl

[18] H. Gillet, B. Mazur, Ch. Soulé, “A Note on a Classical Theorem of Blichfeldt”, Bull. London Math. Soc., 23:2 (1991), 131–132 | DOI | MR | Zbl

[19] G. van der Geer, R. Shoof, Effectivity of Arakelov divisors and the theta divisor of a number field, 1998, arXiv: math/9802121 | MR

[20] S. E. Cappell, J. L. Shaneson, “Genera of algebraic varieties and counting of lattice points”, Bulletin (New Series) of the AMS, 30:1 (1994), 62–69 | DOI | MR | Zbl