Eisenstein formula and Dirihlet correspondence
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 7-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an exact formula for the number of integral points in the system of ellipses related according to Dirichlet with an arbitrary imaginary quadratic field. The relation of this formula to arithmetic Riemann–Roch theorems is discussed. So far it has been known only nine similar formulas. They correspond to the imaginary quadratic fields with the trivial class group.
@article{ZNSL_2018_469_a0,
     author = {D. A. Artyushin and A. L. Smirnov},
     title = {Eisenstein formula and {Dirihlet} correspondence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--31},
     publisher = {mathdoc},
     volume = {469},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/}
}
TY  - JOUR
AU  - D. A. Artyushin
AU  - A. L. Smirnov
TI  - Eisenstein formula and Dirihlet correspondence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 7
EP  - 31
VL  - 469
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/
LA  - ru
ID  - ZNSL_2018_469_a0
ER  - 
%0 Journal Article
%A D. A. Artyushin
%A A. L. Smirnov
%T Eisenstein formula and Dirihlet correspondence
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 7-31
%V 469
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/
%G ru
%F ZNSL_2018_469_a0
D. A. Artyushin; A. L. Smirnov. Eisenstein formula and Dirihlet correspondence. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 1, Tome 469 (2018), pp. 7-31. http://geodesic.mathdoc.fr/item/ZNSL_2018_469_a0/