On the group of infinite $p$-adic matrices with integer elements
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be an infinite-dimensional real classical group containing the complete unitary group (or the complete orthogonal group) as a subgroup. Then $G$ generates a category of double cosets (train), and any unitary representation of $G$ can be canonically extended to the train. We prove a technical lemma on the complete group $\mathrm{GL}$ of infinite $p$-adic matrices with integer coefficients; this lemma implies that the phenomenon of an automatic extension of unitary representations to a train is valid for infinite-dimensional $p$-adic groups.
@article{ZNSL_2018_468_a9,
author = {Y. A. Neretin},
title = {On the group of infinite $p$-adic matrices with integer elements},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--125},
publisher = {mathdoc},
volume = {468},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/}
}
Y. A. Neretin. On the group of infinite $p$-adic matrices with integer elements. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/