On the group of infinite $p$-adic matrices with integer elements
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be an infinite-dimensional real classical group containing the complete unitary group (or the complete orthogonal group) as a subgroup. Then $G$ generates a category of double cosets (train), and any unitary representation of $G$ can be canonically extended to the train. We prove a technical lemma on the complete group $\mathrm{GL}$ of infinite $p$-adic matrices with integer coefficients; this lemma implies that the phenomenon of an automatic extension of unitary representations to a train is valid for infinite-dimensional $p$-adic groups.
@article{ZNSL_2018_468_a9,
     author = {Y. A. Neretin},
     title = {On the group of infinite $p$-adic matrices with integer elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--125},
     year = {2018},
     volume = {468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/}
}
TY  - JOUR
AU  - Y. A. Neretin
TI  - On the group of infinite $p$-adic matrices with integer elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 105
EP  - 125
VL  - 468
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/
LA  - en
ID  - ZNSL_2018_468_a9
ER  - 
%0 Journal Article
%A Y. A. Neretin
%T On the group of infinite $p$-adic matrices with integer elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 105-125
%V 468
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/
%G en
%F ZNSL_2018_468_a9
Y. A. Neretin. On the group of infinite $p$-adic matrices with integer elements. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/

[1] M. S. Brodskii, “Unitary operator colligations and their characteristic functions”, Russian Math. Surveys, 33:4 (1978), 159–191 | DOI | MR | Zbl

[2] V. M. Brodskii, “On operator colligations and their characteristic functions”, Sov. Math. Dokl., 12 (1971), 696–700 | MR

[3] P. J. Cameron, Oligomorphic Permutation Groups, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[4] A. A. Gaifullin, Yu. A. Neretin, “Infinite symmetric group, pseudomanifolds, and combinatorial cobordism-like structures”, J. Topol. Anal., 10:03 (2018), 605–625 | DOI | MR | Zbl

[5] S. Gao, Invariant Descriptive Set Theory, CRC Press, Boca Raton, 2009 | MR | Zbl

[6] A. A. Kirillov, Elements of the Theory of Representations, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[7] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR | Zbl

[8] Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford Univ. Press, New York, 1996 | MR | Zbl

[9] Yu. A. Neretin, “Multi-operator colligations and multivariate characteristic functions”, Anal. Math. Phys., 1:2–3 (2011), 121–138 | DOI | MR | Zbl

[10] Yu. A. Neretin, “Sphericity and multiplication of double cosets for infinite-dimensional classical groups”, Funct. Anal. Appl., 45:3 (2011), 225–239 | DOI | MR | Zbl

[11] Yu. A. Neretin, “Hua measures on the space of p-adic matrices and inverse limits of Grassmannians”, Izv. Math., 77:5 (2013), 941–953 | DOI | MR | Zbl

[12] Yu. A. Neretin, “Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings”, Izv. Math., 79:3 (2015), 512–553 | DOI | MR | Zbl

[13] Yu. A. Neretin, “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70:4 (2015), 715–773 | DOI | MR | Zbl

[14] G. I. Olshanski, “Unitary representations of the infinite symmetric group: a semigroup approach”, Representations of Lie Groups and Lie Algebras, Akad. Kiadó, Budapest, 1985, 181–197 | MR

[15] G. I. Olshanski, “Unitary representations of $(G,K)$-pairs that are connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[16] G. I. Olshanski, “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R. Howe”, Representation of Lie Groups and Related Topics, Gordon and Breach, New York, 1990, 269–463 | MR

[17] G. I. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in Representation Theory, Adv. Sov. Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR

[18] T. Tsankov, “Unitary representations of oligomorphic groups”, Geom. Funct. Anal., 22:2 (2012), 528–555 | DOI | MR | Zbl