On the group of infinite $p$-adic matrices with integer elements
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an infinite-dimensional real classical group containing the complete unitary group (or the complete orthogonal group) as a subgroup. Then $G$ generates a category of double cosets (train), and any unitary representation of $G$ can be canonically extended to the train. We prove a technical lemma on the complete group $\mathrm{GL}$ of infinite $p$-adic matrices with integer coefficients; this lemma implies that the phenomenon of an automatic extension of unitary representations to a train is valid for infinite-dimensional $p$-adic groups.
@article{ZNSL_2018_468_a9,
     author = {Y. A. Neretin},
     title = {On the group of infinite $p$-adic matrices with integer elements},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--125},
     publisher = {mathdoc},
     volume = {468},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/}
}
TY  - JOUR
AU  - Y. A. Neretin
TI  - On the group of infinite $p$-adic matrices with integer elements
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2018
SP  - 105
EP  - 125
VL  - 468
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/
LA  - en
ID  - ZNSL_2018_468_a9
ER  - 
%0 Journal Article
%A Y. A. Neretin
%T On the group of infinite $p$-adic matrices with integer elements
%J Zapiski Nauchnykh Seminarov POMI
%D 2018
%P 105-125
%V 468
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/
%G en
%F ZNSL_2018_468_a9
Y. A. Neretin. On the group of infinite $p$-adic matrices with integer elements. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXIX, Tome 468 (2018), pp. 105-125. http://geodesic.mathdoc.fr/item/ZNSL_2018_468_a9/